Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Journal of Artificial Intelligence 5 (4): 161-169, 2012
ISEN 1994-5450 / DOI: 10.3923/a1.2012.161.169
© 2012 Asian Network for Scientific Information

A Dynamic Cloud Discovery Framework for Deploying of Scientific
Computing Services over a Multi-cloud Infrastructure

'C.D. Karthic, *S. Sujatha and *V. Praveenkumar

'M E-Pervasive Computing Technologies, Anna University of Technology, Tiruchirappalli Tamil Nadu,
India

Department of MCA, Anna University of Techneology, Tiruchirappalli, Tamil Nadu, India

Corresponding Author: C.D. Karthic, M.E-Pervasive Computing Technologies, Anna University of Technology,
Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Traditional scientific computing systems relied on consecrated network of systems that arrives
with complex maintenance and are deficient in flexibility and scalability. These issues necessitate
immense level configuration process in result of a change in the setup (changing of resources,
change of platform). Cloud computing, an on demand and cost effective means of provisioning
computing resources, leverages all the ahove difficulties. The practical applications of clouds for
scientific computing applications are still one of the largest unexplored areas in the cloud computing
domain. Java Enterprise Platform (J2EE) has a successful journey in the field of distributed
interoperable systems. This study explores the J2EE capabilities such as dynamic service discovery
based on publishing of XML based configuration information of the service to the cloud. The
Optimal Cloud Platform Selection (OCPS) algorithm evaluates the clouds for the optimal
deployment of the scientific computing services based on various computational parameters lhike
ram, processor cycles ete along with computational cost under consideration. This framework is
flexible enough to cope with the dynamic nature of the clouds. The implementation has been tested
in a hybrid cloud infrastructure using eucalyptus open source private cloud platform along with
Google app-engine as a gateway to the outside world.

Key words: Java J2EE, dynamic cloud service discovery, optimized cloud platform selection, multa
cloud infrastructure

INTRODUCTION

Scientific computing has been shifted to the cloud environments because of the added benefits
of the cloud environment such as dynamic resource allocation, reduction in capital expenditure,
increased flexibility and secalability (Kalin, 2009). Cloud environment simulates the notion of a pay
as you go model of using the cloud resources. The client can assess the cloud facilities with minimal
change in the infrastructure. The cloud allocates the extra resources to the clients in their
computation process dynamically without any intervention to the computational task which is
devastatingly possible in a traditional distributed computing environment. Seientific computing
tasks require enormous computing resources that ass to the computation cost (Keahey and
Freeman, 2008). The level of computation 1s a cloud 1s dogged by factors such as memaory, processor
cycles, data transfer rate and other latencies. Improper selection of the cloud results in unnecessary
capital expenditure which 1s a critical asset of the organization or user. This study constructs a

161

oJ. Artif. Intel., 5 (4): 161-169, 2012

framework for the optimal deployment of scientific computing services in a multi-cloud
infrastructure. This framework utilizes the dynamic service discovery feature of web services to the
cloud for discovering the suitable cloud environment. The selected cloud environments are analyzed
by the OXPS algorithm based on various computing parameters along with cost for the optimal
deployment of scientific computing services.

The ability to identify an apt cloud and its pricing scheme is a problematical task provided the
varied cloud platforms and architectures. Inappropriate selection of clouds results in unexplained
capital expenditures and execution delays. Porting the application between supported cloud
platforms cannot be done without a major modification in configuration setup. Incompatible porting
leads to inexplicable application behavior. Cloud computing are a distributed computing paradigm
in which the abstracted computing resources are available across the network through
virtualization (Kalin, 2009). Virtualization enables secure abstraction and sharing of innumerable
instances the actual computing resources of a computer in software over the actual hardware of the
provider. The client can execute the task in the abstracted server resources through methods
such as SSH (Secure shell). Private cloud 1s implemented inside the private network of an
organization to implement sensitive operations and full time cloud based research that is
economically impossible in public cloud implementation. Kuecalyptus, an open source Java based
cloud platform provides an efficient choice to deploy a private Infrastructure as a Service (IaaS)
cloud environment using the existing hardware infrastructure (Hoffa et al., 2008). Eucalyptus
provides support for major open source operating systems and utilizes virtualization concept to
abstract the cloud instances using major hypervisors such as KVM and XEN. Eucalyptus can
support all major operating systems as virtualized guests and is highly flexible such that the
number of systems used for implementation can range from one to limitless based on the
configuration type. Eucalyptus provides support for REST and SOAP based interfaces to the outside
world for programmatic interaction and Amazon web services API for programmatic instance
management. Eucalyptus provides a community cloud for users to implement a cloud environment
after a simple registration process.

Efficient deployment of scientific computing applications in a multi cloud infrastructure is an
area that remains unexplored. Traditional method of scientific computation has been performed in
dedicated distributed systems that are narrower minded. Hence, we have concentrated on
particular level of computation. The scenario to deploy a computing cluster on the top of a
multi-cloud infrastructure, for solving loosely coupled Many-task Computing applications were
explained (Moreno-Vozmediano et al., 2011). Many task computing provides the high-performance
computations comprising multiple distinet activities, coupled via file system operations
(Walker et al., 2008). The scientific jobs with a single uniform interface, using the feature-rich
functionality found in these job management environments were studied (Walker et al., 2006). The
general i1ssues in mapping applications and the functionality were described (Deelman et al., 2005).
The VM configurations based on user expectation were discussed (Keahey and Freeman, 2008),
Scientifie grid computing provides the scalability and high performance functionality in cloud
{Chin et al., 2005). Virtual computational domains that safely “trade” machines between them were
described in VioCluster (Ruth ef al., 2005).

In-memory approaches to collective operations for parallel programming, builds on fast local file
systems to provide high-speed local file caches for parallel scripts, uses a broadcast approach to
handle distribution of common input data and uses efficient scatter/gather and caching techniques
for input and output were detailed (Zhang et al., 2008). Disk File System for Large Computing

162

oJ. Artif. Intel., 5 (4): 161-169, 2012

Clusters delivers how the distributed locking and recovery techniques were extended to scale to
large clusters (Schmuck and Haskin, 2002). The use of a cloud system as a raw computational on-
demand resource for a grid middleware and Kucalyptus open-source cloud platform provides the
guidance to work in cloud environment (Caron ef af., 2009}, This study aims at a simple existing
model of distributed computing capabilities of the Java platform into the world of cloud computing.
Even though we are able to implement a framework for porting an application on a PaaS cloud over
an laaS layer, there exist difficulties in porting the application at the IaaS level. The difficulties
arise include proposing a format that is compatible among the machine images, able to transmit the
bare application components at a wire level, able to reconstruct the contents from the wire level to
the application level and making the reconstructed content interpretable by the new cloud
environment.

PROPOSED FRAMEWORK

This study implements a framework that is the first of its kind in utilizing the dynamic service
discovering capabilities of web services to the cloud platform for the efficient deployment of scientific
computing services. The framework is implemented using two private eucalyptus clouds in our
existing infrastructure using minimal configuration (2 systems per cloud). Google app engine 1s
used as the cloud repository (analogous to UDDI in web services) that houses the details of the
registered clouds. The client applications can discover the cloud capabilities dynamically using the
cloud configuration files in the same manner as web services discover themselves.

The framework consists of the following modules:

* Master module
e« (Client module
« Updater module

Master module: Figure 1 depicts the module implemented as a web service that hosts the optimal
cloud platform selection algorithm. The module determined the current cloud platform from the
client request. This framework concentrates on the Java platform. Once the client requested
platform is determined the module creates a restfsoap based query for the Google app engine cloud

Google app engine (cloud repository)

| Updater module I

| Cloud configuration file (XMIL) |

10

W Master module I<"jL

Cloud 1 Cloud 2
Client module Client module
| Application platform | | Application platform |

Hypervisor Hypervisor

Fig. 1: Optimal cloud platform selection architecture

163

oJ. Artif. Intel., 5 (4): 161-169, 2012

repository to select the list of cloud that supports the requested platforms. The Optimal Cloud
Platform Selection (OCPS) algorithm determined the cloud for the optimal deployment of scientific
computing services. The Optimal Cloud Platform Selection (OCPS) algorithm selects the optimal
cloud platform based on comparison of the various computing parameters along such as ram,
processor clock cycles along with computation cost. Once the optimal cloud platform 1s selected the
corresponding cloud details is send to the client as the rest/soap response.

Mathematical model of OCPS algorithm: The mathematical model of optimal cloud platform
selection algorithm aids in selecting the optimal cloud for deploying the scientific computing
application. The optimal cloud is selected based on the expenditure of the computational cost (i.e.)
the cost spend in performing the scientific computing in the clouds. The cost calculation is done as
follows:

r_ NPV (1)
NPC

where, NPV is the net present value of the investment and NPC is the net present capacity
of the cluster,

The NPV of an investment with annual amortized cash flow CT for Y years and cost of capital
k, 1s computed as follows:

B = CT 2
NPV_ZE—(HK)T (2)

The NPC of a computing cluster in a cloud over an operational life span of Y years id computed
as follows:

1 ¥
1-| ——
NPV=TC —{#] (3)
At
where, TC 1s the total capacity of the cluster, which 1s computed as follows:
TC = TCPU<Hx, (4)

where, TCPU 1s the total CPU cores in the computer cluster infrastructure, H is the estimated time
of computation and ., is the expected cluster utilization.

Client module: The client module in Fig. 2 is implemented as a web service client in the private
cloud that creates SOAP/REST bhased queries to the master module based on client requirements.
The client requirements include the querying of available supported cloud platforms, deployment
of a scientific computing service to the cloud.

The client action monitoring module monitors the cloud for configuration changes such as
addition or removal of images, change of pricing schemes and wvarious changes in hardware

164

oJ. Artif. Intel., 5 (4): 161-169, 2012

T 1

REST/SOAP interface to
Master updater module

module ﬂ lL
Create customrcloud

platform request
Optimized cloud

f platform selection
algorithm (OCPS)

Determine client
requested cloud

platform ﬂ

REST/SOAP interface to

client module

Fig. 2: Master module architecture

| l

REST/SOAP interface to
master module

Client ﬂ
module

Cloud configration
monitor

| Add/remove images |

| Change of pricing schemes |

Changes of hand ware

\/ configrations

T
REST/SOAP interface to external
users/clients

1 ¢

Fig. 3: Client module architecture

configurations. Once a change is detected, the updates are sent as REST/SOAF based queries to
the master module automatically which then performs the corresponding action in the updater

module of cloud repository.

Updater module: Figure 3 indicates the updater module implemented in the cloud repository. The
updater module 1s a web based service hosted in the Google App Engine that serves the client
applications. This framework makes Google App Engine, the cloud repository resembling UDDI in
web services that houses XML based cloud configuration files. The configuration files resembles
WSDL in web services that provides information about the cloud capabilities like type of cloud
service, supported images and platforms, the pricing schemes, the URL to aceess the cloud and
various other cloud details regarding the ownership information. The pricing scheme which
determines the computation cost in clouds differs according to location, type of service, time of

165

oJ. Artif. Intel., 5 (4): 161-169, 2012

service (daymight). The updater module contains a request moniter that monitors each incoming
and ocutgoing signals from the updater module. The requests made to the module are either for
updating the XML based cloud configuration files or retrieving the cloud information according to
the client specified platform. The updating of the cloud information configuration files are done by
simple Java based XML API. XML language provides a simple user defined way to structure the
data that is to the transferred.

Figure 4 indicates the object based storage and retrieval model of Google app engine data store.
Google App Engine data store uses the concept of big tables to store the data rather than using
traditional relational storage of data (RDBMS). In big table, each row is represented as an entity
with a specific unique identifier across the entire App Engine platform, which can be
programmatically altered at real time. Big tables ensure language based direct access to the data
store rather than using a specific driver based access. In Driver access method each database uses
a specific driver for a specific language, which can be used to access the database contents
programmatically. Google App Engine’s big table’s concept frees the developer from maintaining
the driver for accessing the data store contents as well as the freedom from learning SQL code for
accessing the data from the database.

Figure 5 shows the XML based cloud configuration file that exposes the capabilities of the cloud.
XML is a simplified format for data representation. Any complex data can be represented in a
simplified model using XML and can be processed programmatically using simple XML based
parsers. The cloud configuration provides a detailed representation of the cloud capabilities such
as cloud type, availability, pricing scheme, location and varicus access parameters in a simplified
XML format. The cloud configuration file also provides information such as location of cloud, URL
to access the cloud and details of the provider of the cloud for accessing queries about cloud
configuration and various other troubleshooting.

Figure 5 represented the XML based configuration file model. This file resembles the WSDL in
web services. This file enables the client applications to learn about the capabilities of the cloud
dynamieally. This dynamic cloud capability detection enables the automation of the deployment of
applications across supporting clouds. This relieves the user from manually finding the cloud

Updater module Google app engine

based cloud
information storage

Simple java based >
XML API [Entity 1<cloud 1info> |

| Entity 2<cloud 2 info> |

Request monitor s

| Entity n<cloud n info> |

Cloud information

retrieval u
Cloud repository

update Retrieved cloud
information list

I |

REST/SOAP interface to
master module

I

Fig. 4: Updater module architecture

166

oJ. Artif. Intel., 5 (4): 161-169, 2012

<?xml version ="encoding ="UTF-8?>
<cloud-info>

<cloud name ="eucalyptus”type = laaS™>
<cloud-provider>encalyptus</cloud-provider>
<cloud-location>India</cloud-location>
<cloud-url>http://ind.eualyptus.com</cloud-url>
<images>

<os machine-id ="emi-123awrf>
<platform>Linux</platform>
<name>Fedora</name>
<version>16</version>

<architecture>x86</architecture>

Fig. 5: Cloud configuration file madel

platform to deploy a particular computing application and discussing the computing cost ete. The
Optimized Cloud Platform Selection (OCPES) algorithm enables the automatic selection of a cloud
platform where the cost of computation does not exceed when compared to that of the computing
resources provided by the platform. The client does not have to worry about the computation cost
as well as the time needed to complete the computation. These cloud configuration files are easy to
maintain because they are base on the simplified XML format and can be processed by a simple
Java based XML parser.

The optimal cloud platform selection component is executed in the Google App Engine
that provides a simple entity based programmatic data retrieval. Here, the emphasis to cloud
selection 1s based on cost of computation which 1s a major asset in cloud based scientific computing
process. The data store service of Google App Engine provides an excellent choice for programmatic
data retrieval that 1s different from the traditional RDBMS (relaticnal database
management system) where a database specific driver 1s used to interact with the data stored.
Google App Engine based data store provided significant performance improvement over the
driver based data access in traditional RDEMS. The framework uses the cloud concept at the
minimum configuration level because of economical constraints. The Google App Engine provides
a free PaaS based cloud application hosting by limited resources allocation. Figure 6 show Code

sample for Optimum Cloud Platform Selection.

EXTENSIONS TO THE ARCHITECTURE

This framework implements an optimal method for the deployment of secientific
computing services in a multi-cloud environment using PaaS architecture. The experimental
setup has been implemented using two eucalyptus private clouds which have been pre-
initialized to resemble a PaaS platform. This framework concentrates on the dJava based

distributed computing capabilities. The same notion can be extended to varicus other

167

oJ. Artif. Intel., 5 (4): 161-169, 2012

/lcloud parameters
String title list() = {"imageld", "image Name", "category", "version", "ram", "storage", "numCpu", "cost", "architecture"}

Array list<String> least cost cloud = new Array list<String>0;

//identifer of cloud
Key key = Key factory.create key ("image", "image");
Datastore service datastore = Datastore service factory.get Datastore service 0;

Query query = new Query ("image", key);

Fig. &: Code sample for optimum cloud platform selection

programming platforms like. NET, python Ferl ete. The deployment of applications can be
done in PaaS using minimal configuration changes. The configuration can be extended to advanced
configurations which included hundreds of systems.

CONCLUSION AND FUTURE WORK

In this study, we have proposed a framework based on the existing distributed computing
platform provided by Java to that of a cloud environment. This solution proposes a simple optimized
solution to implement an efficient methodology for deploving a computing application over a multi-
cloud infrastructure in a PaaS (Platform as a Service) cloud infrastructure. This can be extended
to the IaaS (Infrastructure as a Service) platform where the porting of applications has been the
real problem. The proposed work consists of the formulation of an interoperable format that is
applicable between various cloud engines or at least be aceceptable by varicus engines with minimal
configuration changes. Also the work can be extended to include capabilities for on the fly dynamic
change when being ported to a suitable cloud environment.

REFERENCES

Caron, K., F. Desprez, D. Loureiro and A. Muresan, 2009. Cloud computing resource management,
through a grid middle ware: A case study with diet and eucalyptus. Proceedings of the
IEEE International Conference on Cloud Computing, September 21-25, 2009, Bangalore,
pp: 151-154.

Chin, J., 5. Harvey, 5. Jha and P.V. Coveney, 2005, Scientific grid computing: The first generation.
Comput. Sci. Eng., 7: 24-32.

Deelman, K., G. Singh, M. Su, J. Blythe and Y. (il ef al., 2005, Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci. Program. J., 13: 219-237.

Hoffa, C., G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman and J. Good, 2008, On the
use of cloud computing for scientific workflows. Proceedings of the IEEE Fourth International
Conference on eScience, December 7-12, 2008, Indianapolis, IN., USA., pp: 640-645,

Kalin, M., 2009, Java Web Services Up and Running. O'Reilly Media, USA. ISBN-13:
9780596521127, Pages: 316.

Keahey, K. and T. Freeman, 2008, Science clouds: Early experiences in cloud computing for
scientific applications. Proceedings of the Conference on Cloud Computing and Its
Applications, October 22-23, 2008, Chicago, IL., USA.

168

oJ. Artif. Intel., 5 (4): 161-169, 2012

Moreno-Vozmediano, R., E.5. Montero and .M. Llorente, 2011. Multicloud deployment of
computing clusters for loosely coupled MTC applications. IEEE Trans. Farallel Distrib. Syst.,
22: 924-930.

Ruth, F., P. McGachey and D. Xu, 2005, VioCluster: Virtualization for dynamic computational
domains. Proceedings of the IEEE International Conference on Cluster Computing, September
26-30, 2005, Burlington, MA., USA, pp: 1-10.

Schmuck, F. and K. Haskin, 2002. GPFS: A shared- disk file system for large computing clusters.
Proceedings of the 1st Conference on File and Storage Technologies, January 28-20, 2002,
Monterey, CL., USA.

Walker, K., J. Gardner, V. Litvin and E. Turner, 2006, Creating personal adaptive clusters for
managing scientific jobs in a distributed computing envircnment. Froceedings IEEE
International Workshop on Challenges of Large Applications in Distributed Enwvironments,
June 19, 2006, Paris, pp: 95-103.

Zhang, 7., A Espinosa, K. Iskra, [. Raicu, I. Foster and M. Wilde, 2008, Design and evaluation
of a collective I/O model for loosely-coupled petascale programming. Proceedings of the
Workshop on Many-Task Computing on Grids and Supercomputers, November 17, 2008,
Austin, TX., USA., pp: 1-10.

169

	161-169_Page_1
	161-169_Page_2
	161-169_Page_3
	161-169_Page_4
	161-169_Page_5
	161-169_Page_6
	161-169_Page_7
	161-169_Page_8
	161-169_Page_9
	JAI.pdf
	Page 1

