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Development of Quadratic Plate Bending Macro-Elements

Hamid R.A. Alani and Issam B, Nasser
Al-Isra University, Jordan

Abstract: Macro-elements play a big role in reducing number of equations to be solved in finite-
element analysis, This is because a single macro-elerment will represents many finite elements. Two
types of quadratic quadrilateral plate bending macro-elements were developed in this paper. These
macro-elements are based on equivalent energy theory. Implementation of these macro-elements in
the analysis showed reduction in number of equations and computer tim¢ and excellent results
were achieved. These new developed macro-elements were tested and the results were compared
with the results of conventional plate bending finite element solutions and with closed form solutions

if available. -
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Introduction

The analysis of large structural systems using the
conventional finite element method is impractical. This
is because of the necessity to use relatively fine mesh
to obtain an accurate model. This will lead to a large
number of equations to be solved. Therefore, it is
advantageous to seek for approaches that reduce the
total number of degrees of freedom (d.o.f) needed to
successfully model large systems. One of these
methods is to use macro-elements.

In this paper two types of quadratic plate bending
macro-elements were developed. :

These macro-elements are based on transformation of
many structural finite elements into single equivalent
macro-element.

This is done by preserving the same potential energies
of the structure modeled by finite elements and the
same structure modeled by macro-elements. The first
macro-element is based on the quadratic serendipity (Q-
8) finite element. The second macro-element is based
on the quadratic Lagrangian
(Q-9) finite-element.

Plate Bending Finite Elments Used In The
Formulations Of The Macro-Elements: What follows
are brief information about the plate bending finite
elements studied and used In the formulations of the
macro-elements. .

The (Q8) Quadratic Serendipity Finite Element
This element has eight nodes with three d.o.f per node
[Rock and Hinton, 1976] see fig (2). It is Mindlen type
plate bending finite element.

The displacement vector is

Lqu=[wi : W, W]

iy ' X
Wherei=1, 2, ... 8
The (Q9) Quadratic Langrangian Finite Element:
This element is a Mindlen type plate bending element
with nine nodes and three d.o.f per node [ pugh etal,
1978 ] as shown in fig (3).
The displacement vector is:
LaJ=1w, Wiy Wix ]
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Wherei=1,2,...9

Formulation Of The Macro-Elements: The stiffness
matrix of @ macro-element is formulated by equating
the strain energy of the criginal structure modeled by
finite-elements and that of the equivalent macro-
element model as follows:

u,=u_ (1)
Where:
u o The strain energy of the original structure modeled

by many finite elements that constitute one macro-
element.
Um: The strain energy of the macro-element.

1 1
E-qu liskJ{a,} = 2-Lqu[Km] {a.,}
(2)
Where:
qo: Displacement vector of the structure modeled by

many finite elements that constitute one macro-
element.
qm: Displacement vector of one macro-element.

[SK 0]: The assembled stiffness matrix of ail stiffness

matrices of the finite elements constituting one macro-
element.
[Km]: The stiffness matrix of the macro-element.

Let the displacement vector of the original structure,
{which constitute one macro-element) {qo} be related

to that of Vthe macro-element {q m} as:

{9 = [T {a} (3

Where: [T] is the transformation matrix for the macro-
element. Substituting Eq. (3) into Eq. (2) gives:

L, I [sKo [T)4a, b =La, JIK 1 €a,)

[m1" [SK,) (7] = [K_] (4)
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In the solution, matrix [SKO] is not needed, only [KO],

the stiffness matrix of a single

finite element bounded by the macro-element is
needed. To explain this let.

n: The number of finite elements comprising the
macro-element.

[Te] : The finite-element transformation matrix.

Every time [Te] carries a partition of the transformation

matrix [T] that corresponds to the degrees of freedom
of the finite-element under consideration. The
transformed stiffness matrix for each finite-element is
placed in its proper place in the structural stiffness
matrix of the equivalent model;~which is the place of

"
Kdast Y T IKJOI=IKT (9

e=1 :
The transformation matrix [Te] is simply the evaluation
of the shape functions of the macro-element at the
nodes of the finite-element. This evaiuation is based on
local coordinates for the nodal points of the finite-
elements with respect to the macro-element nodes.
To form a general transformation matrix [Ti]
correspending to an arbitrary nodal point i of a certain
finite element within a certain macro-element, consider
the notation Nkj which means that shape function k of

node i of this macro-element is evaluated at point i
using its local coordinates within the macro-element.
The transformation matrix will depend on the macro-
element type as follows:

a. The {Q8) Quadratic Serendipity Finite-Element:

The displacement functions over this finite element are .

expressed as follow:

w=i Niwi;ex=z N6y & o =

i=] i=1

n
Z N o,

[
i=l
Where the shape functions { Ni ) are the same in the
above equations.
To construct [Te] of a certain finite element consider
Fig- (6). The transformation matrix [Te] of the finite
element {k,L,m,n,0,p,q,r] which is inside the macro-
element (1,2,3,4,5,6,7,8) will be as follows:

e e ke Ts Twe T ks
T To Tz Tu s Ts Ty Tig
Tt Tz "oz Tmd Tos Toe Tz T
el = Ty T2 T3 T Ts Te Tz e
Tot T2 T3 T "5 "6 Tz T
oo T T Tt T T T e
T T2 '@ T e Te o e
M ToT™s Ta s T Ty T

Where:
N, 0
(Ml = 0 N, O
0 0 N

i.e. the participation of node [k] of the finite element
that corresponds to node (1) of the macro-element
under consideration,

In general:
NJ. 0 0
T] = .
7y o0
J

Where:i=k,L, m,
finite element.

the nodes of the

j=1,2,3, ..7,8 the nodes of the macro
element.
Then :
-
D [T kgl 1T = K

e=1
b. The (Q9) Quadratic Lagrangian Finite Element:
Here, there are nine nodes with three d.o.f. of type w,

Bx & By.
Then:
[Te] is 27 = 27 and:
Nj 0 0
T.] = 0 N,
[ IJ] ; 0
0 0 ;
Where: i=k, L,m,n, 0, p,q,rs
1=1,2,3,4,56,7,89
< T
And: Y [T ] [Kgl (T = K

e=1

Macro-Element load vector: The externals loading
are applied at known nodes of the finite-element
model. However, these nodes may not necessarily
coincide with the macro-elements nodes. It is required
to calculate the equivalent consistent nodal load vector
of each macro-element.

In general, all forms of loading other than concentrated
loads subjected to the original structure nodes must be
first reduced to equivalent nodal forces acting on the
original structure, as with the conventional finite
element method. The nodal load vector of the original
structure can then be transformed to equivalent
macro-element structural load vector by equating the
external work done on the original structure modeled
by finite-elements and that of the macro-element
model as follows:
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W =
Where:
WO: The external work done on the original structure

that constitute one macro-element.
W__: The external work done on the macro-element,

LagIFy =La,, I¢F ©)
Where:

{Fo}: The assembled nodal load vector of the finite-

elements constituting one macro-element.
{F rn}: The equivalent nodal ioad vector of the macro-

element. Substituting Eq. (3) into Eq. (8) gives:
Lo I ¢Fl =La,, I¢F 3
' ¢F ) = {F 3 (9

Where [T] is the same transformation matrix used in
deriving [K ).

The Assembly of all

w (7).

the macro-element stiffness
matrices into a structural stiffness matrix and aiso the
construction of the macro-efement structural load
vector and solution of the structure equation are the
same as that of conventional finite element method.
Applications: Various problems of plate bending
analysis are solved and presented below in order to
demonstrate the efficiency of the macro-elements
developed. The accuracz of the equivalent energy
macro-elements are checked by using the conventional
finite elements menthod " and, if available, the exact
solution. The moments and stresses are generally
caicuiated at the Gauss points of the macro-elements
in the E)roblems presented below unless it is stated
differently. . .
Problem No (1): The analysis of thin, s
supgorted 1sotropic piate under a uniform
load, as shown in Fig. (7).
The following data are given for this problem:

=10 s 10 UNES OF length.

uare, simply
y distributed

=01 e .. IN Units of length.
E = 1092 * 107 o in units of
force/area.
7 . )
= = = *
ny = ze Gyz 4.2 107 ..., in units of
fNorce/area.

In units of force/area.

The results may be expressed in a normalized form as

follows: . "
Deflection = C "“Qz *L *10 /D

3 -1
Rotations {in x ory)} = C * Qz* L*10 /D

2 -4
M .M orM =C*QZ*L * 10
(for Nut = 0.3 "

where: C* 10 represents the value of the function for .

the normalized data given above. )
Due to symmetry only one quarter of plate is analyzed.

The analr_sis Is done using the (Q8) elements, as
i

shown in ? (7).

The original finite elfement mesh has (65) nodes and

195) d.o.f. The equivalent energy model has ?21_)

ggd;eéo and {(63) d.o.f. The total reduction in d.o.f. is
eflections and rotations are shown in

8 & 9). The maximum errors are (7.9%) &

respectively.

The results for d
Figs. S
(4.2%
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Table (1) sho S_a comparative study for the execution
time {CPU), thé band width-solution operation count

(Ne = HBW2), central deflections
corresponding errors. The analysis is done
conventional F.E. and (Q8) equivalent M.E. mes es,
The bandwidth-solutions operation count (Armanios &
Negm, 1983) is a useful measure of the computer time
required to solve banded equations. The errors in
central deflections are measured from those of the
original F.E. meshes,

Problem No (2): The anal
clamped, isotropic plate
under trianguiar loadin
following data are give
R= 3.0 m.

t = variable from 0.1m at center
edges of the plate, i.e. bottom slo

E=25*10%kn./ m

their
using (Q8)

and

ysis of thin, circular,
vith slopped bottom surface,
g, as shown in Fig, (10). The
n for this problem:

of plate to 0.25 m at
pe 15 5%.

Gxg = 10.5932 * 105 kN. / m2, Gy = G,, = 10.5932 *
10° kN. / m°,
Nu = 0.18

Loading is triangular and varying from zero at center of

late to 25.958 kN./ m” at edges of plate.

ue to symmetry, only one quarter of plate is
analyzed.” The analysis' is done using the (Q8)
I1soparametric efernents.
Table (2} shows the details
and the equivalent M.E. mod
The results for deflections,

and moments M_ along the
(13, 14 & 15).

When using the e
moments are cafcula

of the original F.E. model
els for the problem.

rotations {in x direction)
x-axis are shown in Figs

quivalent energy theory, the
! | ted at the Gauss points of the
individual F.E. inside the M.E., see Fig. (14),

The maximum errors for defiections when using the
equivalent M.E. are at the center of the plate and

having the values 0.28%) & (14.58%) for M.E.
meshes (12 8% & (3 Q8) respectively. These errors
are measured from the (48 Q8) conventional F.E,

analysis for the
Problem No

annular plate w
a uniformly dist

roblem.
{3):_ The analysis of thin, isotropic,
ith different boundary conditions, under
ributed load, as shown in Figs. (15 &
éS).érrae following data are given for this problem:
=2.0m.

t=0.02m.
E =200 * 10 kN / m?

6 2
G, =G_=G_=76.923*10%kN/m
M= 0¥ 7

Qz =9.158 kN / m2

Due to st_metry, only on quarter of plate is analyzed,
The analysis is done using the (Q9) isoparametric
element,

The plate is first considered

bi:undary and fre
shows that the total number of d.o.f.

5).
Table S3L is

Y (44.4%) i.e. one macro-element contains
two finite elements.

reduce
The results for deflections and moments (ij along the

x-axis are shown in Figs (16 & 17
The plate is then considered as
boundary and guided inner boun
(18), The same discretizations a
previous case, see table (3). The results for deflections
and moments (M_) along the x-axis are shown in Figs.

(19 & 20). The maximum error in Mxis 8.3%.

. s having clamped outer
e inner boundary, as shown is Fig.

%éving clamped outer
dary, as shown in Fig,
re used here as for the
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Fia 7 Quarter OF Plate For Problem No.l Analyzaecl
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Fig. 13: Moment Mx Along X-Axis For Problem No.2
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Fig.14: Gauss Points Locations In XY-Coordinate
System For The (Q8) M.E. In Problem No.2
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Fig. 15: Details Of The Clamped-Guided Annular Plate
For Problem No.3 Analyzed With The (Q9) Elements
{a} Plan Of Plate, (b) Diagonal Section Of Plate

(c) Discretization Of Quarter Of Plate
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Quarter OF Plate For Problem No.4 Analyzed

With (Q9) Elemenis
Fig. 21
" % T %, =01 G, for FE&ME
L. e
. \\
[+ =z G > G
KE ¥z Xy
4*4 F.E Meash
_____ 2%2 M.E Mesh
¥ T T T — ¥
Q 3.9 1.8 .7 X
X-Axis Deftection For The Thin Plate Of
Prablem No.s ($/L=0.02)
Fig.22
e ([ Gyy = G, = 6, for FE&ME
G = Gz 1090 G
xXE ye XY

4*4 FE Mesh

—_—— 2*2 M.E Mocsh

T T T ¥ T T T

0.9 &1 2.7 36

X-Axis (m)

X-Axis Deflecrion For The Thick Plate Of Problem
No.4 (t/L=0.i5)

Fig. 23

423

Muoments M, & My(kN.m.'m)

Moments. Mxy (KN.m/m)

3000
— e
2500 T
2000
1500 A
1000
-
4 %4 FE Mesh
300
—_— e 2% 2 MLE Mesh
0 . ! r ' .
] 1.273 2.546 3818 5.001
Dragonal Distance (m)
Fig. 2aMomenis M, & My, Along Sec.A-A For The Thick
Plate OFf Problem No.4 (£/L=0.15)
0
.500 * O T By
- K000 4
-1500 -
2000 4*4 F.EMash
2500 - — === 2%2 M.EMesh
-3000 T T T T T T T
¢ 1.273 2.546 3818 5.091
Dingonal Distance (m)
Fig. - Moment Myy Along Sec. A-A For The Thick
25 Plate OF Problem No.4
-200 sz ™ Oz = Sy
é 400 h
P 4
% 500
L
- 4
E]
o -800 4 -
z - Rl
5
& 10001 4%4 EEMesh Y
. -
- — 2%2 ME Mes
2004 ? M.E Mesh
T T T [} T T 1
(] 1273 2.546 1818 3091

Diagonal Distance (m)

Fig, - Shears ¥x & Vy Along Sec.A-A For The Thick

26

Phate Of Problem No.s



Alani and Issam B. Nasser :
r 4

Development of Quadratic Plate Bending Macro-Elements

Tablé 1. A Comparative Study of Different (Q8) Meshes for Problem No.1

Original M.E M.E CPU (seconds) 2 =central def Error % in
F.E Mesh size Ne*HBW S o2 Def1.
Mesh (F.E*F.E) . D*10
Qz* L4
Conventional F.E. analysls 858.5 1443%123%= 0.4064452 -
21831147
6%6 2%2 492.1 2 0.4057476 0.17
399%69 .
(864 d.0.f = 1899639
12*12 Q8 4*4 3*3 438.7 195,“512 0.4043378 . 0.52
{3456 .0.) (384 d.o.f) = 507195
3*3 4*4, 428.3 - 2 0.4009996 1.34
{216 d.0.f) :22"11‘:,’%0
2%2 6%6 421.7 waal 0.3731404 8.19
Gsson e
Conventional F.E. analysis 206.9 675 *872 0.4064444 -
= 5109075
8*8-Q8 4*4 2%2 203.7 507195 0.4043634 0.51
(1536 d.o.f) (384 d.o.f)
2*2 4%4 189.7 68607 0.3732003 8.18
{96 d.o.N
Tabie 5: A Comparative Study for Different (Q9) Meshes for the
bhle 2:  Details for Problem No. (2) Thin_Piate of Problem No. {4)
Mesh No. of  Total d.o.f % Reduction in Mesh 8§*8 4*4 2%2
: nodes d.o.f Conventio equivalent equivalent
: ) nal M.E. M.E.
48(Q8) 61 183 - F.E.
conventional F.E M.E. size - 2*%2 4*4
Equivalent M.E {F.E.*F.E.)
based on F.E. of Total d.o.f 1728 432 108
type (Q8) CPU 414.6 291.1 261.8
12 Q8 M.E 49 147 19.7% {Seconds)
*x
3 Q8 M.E 16 48 73.8% Ne* HBWZ 8672 243 * 632 75 * 392 =
111 = = 964467 114075
10682307
Central 4.160454 4,148805 4.099109
ble 3: _Detalls for Problem No. (3) ?;ff':)‘t"’"
Mesh(1) No. of nodes Total d.o.f Error % in . 0.28 1.47
(2) (3) ’ )
B (Q9) conventional F.E 45 135 gz?lggtlion
4 (Q9) M.E based on F.E. of 25 75 Central 45046936  4.5382051  4.6681530
Lype {Q9) moment M
i x
{kN-m/m)
Error in Mx - -0.74 - 3.63
Central 6.4825045 6.5213435 6.6506472
le 4:_Details for Problem No. (4) moment M
Mesh : No. of Total d.o.f (kN-m/m)
(1) nodes (3) Error % In - - 0.60 -2.59
(2) M
4 * 4 conventtonal F.E 81 243 y
2 * 2 gquivalent M.E. 25 75

424
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Problem No (41: The analysis of thin and thick,
square, simply supported, orthotropic plate under a
uniformly distributed load, as shown in Fig. (21). The
following data are given for this problem:

L=7.2m.

Thickness t:
Case A: t = 0.114m (t/L = 0.02, i.e. thin plate).

Case B: t = 1.080m (t/L = 0.15, i.e. thick plate).

E, =20 * 10% kN / m2.

6

E, = 30* 10 KN / m2

6 2.
G, =15*10"kN/m
ny /

N Gyz: Variable and.as defined on graphs
Nu_ = 0.15
N Y N

u = Nu

xy

yx
Loading QZ:

* =
Ey/ Ex 0.225

Case A: Qz = 2.875kN/ r\n2 (for thin plate)

Case B: Q, = 1212.807 kN / m? (for thick plate)

Due to symmetry, only on gquarter of plate is analyzed.
The analysis is done using the (Q9) isoparametric
elements.

The plate is first considered as a thin plate, i.e. case A,
then considered as thick plate, i.e. case B. The same
discretizations are used for both cases, which are
shown in table (4). Table (4) shows that the total
number of d.o.f is reduced by 69.1% with the
equivalent models.

The analysis is done using the technique of reduced
integration when the plate is thin, and using full
numerical integration when the plate is thick.

The results for deflections for both cases along x-axis

are shown in figures (228 23). Also, the resuits for
moments (Mx’ My & Mx\) and shears (Vx & V‘) for the

thick plate along sec. A-A are shown in figures (24,25
& 26).

Table {5) shows a comparative study for the execution
time (CPU), the band width-solution operation count

(Ne * HBWZ), central deflections, central moments (Mx

&My)

done on the thin plate using (8 * 8 Q9) original F.E
mesh and:
ze = Gyz
moments are measured from the (8 * 8) original F.E.
mesh analysis.

and their corresponding errors. The analysis is

= G)Q. The errors in central deflection and

The central moment values in table (5) are obtained by
extrapoiating the moment values at the Gauss points
using a technique known as “Local Stress smoothing”,
which is simply a bilinear extrapolation of the (2*2)
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Gauss point stress values within an eiement (Cook,
1981).

Results and Discussion

The four solved problems showed that using the
macro-elements in the analysis reduced the number of
equations to be solved. When the size

of the macro-element used is of moderate, excellent
results are achieved with good amount of reduction in
d.o.f and computer time. But when the size of the
macro-element is, targe still acceptable results are
chieved with substantial reductions in d.o.f and
computer time as shown in tables {1) and table (5).

Conclusion

New quadratic plate bending macro-elements based on
two types of finite elements were developed,

The solved examples demonstrated that using these
macro-elements in the analysis largely reduced the
total number of d.o.f required to model a certain
structure. This in turn reduced the total number of
equations to be solved.

Reduction in total number of equations reduced
computer time and memory space for storage. This will
allow personal computers to analyze relatively large
structures,

At the same time these M.E. provided accurate results.
In addition, finite elements of different sizes,
thicknesses and material properties can easily be used
inside the macro-elements if required in the analysis.
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