Extended Stable Models for Logical Programs with Many Negations

Victor Felea
Faculty of Computer Science, University "Al. I. Cuza" IASI
6600 IASI, Romania

Abstract: The family of stable models for a logic program with one negation was studied by Melvin Fitting. We introduce extended stable model semantics of logic programs with many negations, which natural extends the notion of stable model semantics for logic programs with one negation. We use the notion of bilattice with two orderings which defines the structure of the family of stable models. The first one is called knowledge ordering, the second one is called degree of truth. For a vector of valuations in a bilattice \mathbf{B}, we define a pseudoevaluation and an operator associated to a program φ. We also consider the notion of i-model for a program φ. For an operator we define a fixed-point iteration. This iteration is applied to the operator associated to φ and produces so-called extended stability operators. When the fixed-point iteration can be applied by n times, where n is the number of negations, then every fixed point of the last operator is an extended stable valuation of φ.

Key Words: Logic Program, Model, Fixed Point, Stable Model, Valuation, Pseudoevaluation, Stability Operator

Introduction

Gelfond and Lifschitz (1988) have extended general logic programs (with negation-as-failure interpreted autoepistemically) by adding "classical" negation which is, in fact, a strong negation (in sense of Gerd Wagner, 1991).

Kowalski and Sadri (1990), also Przymusinski (1989) consider logic programs with two kinds of negations.

Da Costa et al., (1990) introduce a resolution calculus for logics with weak and strong negation based on idea of paraconsistency.

Gerd Wagner (1991) use the concept of strong negation for representation and processing of explicit negative information and the concept of weak negation for the usual form of negation in databases, viz. negation-as-failure.

Melvin Fitting (1993 and 1991) studies the structure of the family of all stable models for logic programs and uses bilattices with two orderings: one is knowledge ordering, denoted by \leq_k and another is degree of truth, which is denoted by \leq_t.

Rajasek and Jack Minker defined in (1989) a model-theoretic semantics based on states for stratified disjunctive programs and shown that the least state characterized by the fix-point semantics is a stable-state and a supported state.

Kifer (1998) considered several decidability problems of a query predicate with respect to the least fix-point models of a logic program φ, and with respect to any fixpoint model of φ.

Spyratos and Stamate (1996) use the logic $L(2)$ with five values (true, false, unknown, possible true, possible false) and define logic programs which may contain logical values in the body of clauses. They study the stable multivalue semantics for programs with a negation.

Preliminaries: We use the notion of bilattice with two inter-related orderings, denoted by \leq_t, \leq_k. The first one is on the "degree of truth", the second one is the "degree of knowledge".

Definition 1: A pre-bilattice is a structure $\langle B, \leq_p, \leq_k \rangle$, where B is a nonempty set, \leq_p and \leq_k are each partial orderings giving B the structure of a lattice with top and bottom.

Definition 2: In a pre-bilattice $\langle B, \leq_p, \leq_k \rangle$, meet and join under \leq_k are denoted by \wedge and \vee, meet and join under \leq_k are denoted by \otimes and \oplus respectively. True and false are top and bottom under \leq_p and top and bottom under \leq_k are denoted \top and \bot. If the pre-bilattice is complete, infinitary meet and join under \leq_k are denoted \wedge and \vee, and infinitary meet and join under \leq_k are denoted \otimes and \oplus.

Definition 3: A distributive bilattice is a pre-bilattice $\langle B, \leq_p, \leq_k \rangle$ in which all 12 distributive laws involving \wedge, \vee, \otimes and \oplus hold. An infinitely distributive bilattice is a complete pre-bilattice in which all infinitary and finitary distributive laws hold.

Definition 4: A bilattice has a pseudonegation if there is a mapping \dashv that reverses the \leq_k ordering and leaves unchanged the \leq_k ordering. A negation is a pseudonegation with the property $\dashv x = x$. For other notions and results (Melvin Fitting, 1993 and 1991).

Logic Programs with Many Pseudonegations: Let B be a complete bilattice with n pseudonegations, denoted by \dashv_i, $i = 1, \ldots, n$. Assume that \wedge and \vee are duals with respect to each \dashv_i and also \otimes and \oplus. It results that the pseudonegations can be pushed all the way inside. We treat members of B as atoms and allow them to appear in clause bodies. A formula that does not contain a member of B is called a pure formula. We take a clause to have the form $A \leftarrow a$, where A is the head (an atomic formula) and a is a formula (the body of the clause).
Victor Felea: Extended Stable Models for Logical Programs with Many Negations

Literals have the form A or $\neg A$, where A is an atomic formula and $\neg A$ are pseudonegations, $j = 1..k$.

A formula is built up from literals and elements of B using the operators \land, \lor, \exists, $\neg A$. We assume that all free variables of the clause body appear in the head, the head contain no function symbol, and a given predicate letter can occur in the head of only a single clause, by the combining all the clauses having as the head an atomic formula with the same one function symbol into a single clause (Fitting Melvin, 1993).

Therefore a clause has the form:

$$P(x_1, \ldots, x_n) \leftarrow \varphi(x_1, \ldots, x_n)$$

where $P(x_1, \ldots, x_n)$ is the head of formula and $\varphi(x_1, \ldots, x_n)$ is the body of formula.

A logical program is a finite set of clauses with no predicate letter appearing in the head of more than one clause. For a program \mathcal{G}, we denote by \mathcal{G}^* the set of all ground instances of members of \mathcal{G} over Herbrand base. Let B be a bilattice. A valuation in B is a mapping v from pure ground atoms to members of B. The family of all valuations in B is denoted by $\gamma(B)$. It is possible to define in $\gamma(B)$ two pointwise orderings:

1. $v_1 \leq v_2$ if and only if $v_1(a) \leq v_2(a)$ for every pure ground atom A;
2. $v_1 \lequiv v_2$ if and only if $v_1(a) \equiv v_2(a)$ for every pure ground atom A.

The set of valuations in B itself is a bilattice and inherits the structure of B (Fitting Melvin, 1993). A valuation is natural extended from pure ground atoms to all formulas. If $c \in B$, then $v(c) = c$ and

$$v(\neg A_1 \land \neg A_2 \land \ldots \land \neg A_k A) = \neg v(A_1) \lor \neg v(A_2) \lor \ldots \lor \neg v(A_k).$$

Moreover, $v(f_1 \lor f_2) = v(f_1) \lor v(f_2)$, where \lor on the right is the join of B in the \leq ordering.

Similarly for $v(f_1 \land f_2)$.

$$v(\exists x \varphi(x)) = \Sigma v(\varphi(i)),$$

for all closed term i, $v(\forall x \varphi(x)) = \Pi v(\varphi(i))$, for all closed term i. Here Σ and Π are infinitary meet and join under \leq.

Generalized Transformation of Type Gelfond-Lifschitz: We use the idea of Melvin Fitting (1993) of separating positive information and negative information, by defining of consequence operator, which will reflect this separation. This consequence operator will accept as input a vector of valuations $\bar{\nu} = (v_1, \ldots, v_{n+1})$, where v_i is for assigning meanings to positive literals, and ν is for pseudonegation $\neg A$, $2 \leq i \leq n+1$.

For a vector of valuations $\bar{\nu} = (v_1, \ldots, v_{n+1})$, we define a pseudovaluation denoted $v_1 \Delta v_2 \Delta \ldots \Delta v_{n+1}$.

Definition 5: Let $\bar{\nu} = (v_1, \ldots, v_{n+1})$ a vector of valuations in the bilattice B with n negations $\neg_i, i = 1..n$. A pseudovaluation in B, denoted $v_1 \Delta v_2 \Delta \ldots \Delta v_{n+1}$, is defined as follows:

$$(v_1 \Delta v_2 \Delta \ldots \Delta v_{n+1})(A) = v_1(A)$$

$$(v_1 \Delta v_2 \Delta \ldots \Delta v_{n+1})(\neg A_i) = \neg v_i(A_i), i = 1..n$$

$$(v_1 \Delta v_2 \Delta \ldots \Delta v_{n+1})(\neg A_k A) = \neg v_1 \lor \neg v_2 \lor \ldots \lor \neg v_{k+1}$$

$$k \geq 2; \; a_j \in \{1, 2, \ldots, n\}, j = 1..k.$$

These pseudovaluations are extended to formulas by induction. We use the term B-pseudovaluation (shortly pseudovaluation) for a mapping from pure ground literals to B.

For a pseudovaluation ν and a literal $\neg A_1 \land \neg A_2 \land \neg A_k A$, the value assigned to ν is generally different from the value $\neg v_1 \lor \neg v_2 \lor \ldots \lor \neg v_k$. $\nu(A)$.

Now we define an extended immediate consequence operator Ψ_B for logic programs with many negations.

Definition 6: The extended immediate consequence operator $\Psi_B : \gamma(B)^{n+1} \rightarrow B$ is defined as follows. Let $\bar{v}_1, \ldots, v_{n+1}$ be a vector of $n + 1$-valuations in B. $\Psi_B(v_1, \ldots, v_{n+1})$ is the valuation such that the following conditions hold:

1. $\Psi_B(v_1, \ldots, v_{n+1})(A) = \text{false}$, if the pure ground atom A is not the head of any member of ν^*.
2. If $A \leftarrow \alpha$ is in ν^*, then $\Psi_B(v_1, \ldots, v_{n+1})(A) = v_1 \Delta \ldots \Delta v_{n+1}(A)$.

For $n = 1$ it obtains the operator Ψ_B defined by Fitting (1993). In the following we need the notion i-model for a program \mathcal{G}.

Definition 7: A vector of $n + 1$ valuations $\bar{\nu} = (v_1, \ldots, v_{n+1})$ is an i-model for the program \mathcal{G} provided the following conditions are fulfilled:

1. $v_i(A) = \text{false}$ if there is no member of ν^* of the form $A \leftarrow \alpha$.
2. $v_i(A) = v_1 \Delta \ldots \Delta v_{n+1}(A)$ if $A \leftarrow \alpha$ is in ν^*.

Remark 1: The vector $\bar{\nu} = (v_1, \ldots, v_{n+1})$ of valuations is an i-model for \mathcal{G} if and only if $\Psi_B(v_1, \ldots, v_{n+1}) = \nu_i$ that is v_i is an i-fixed point of Ψ_B.

In the following several notations are necessary. For a vector of $n + 1$ valuations, $\bar{\nu} = (v_1, \ldots, v_{n+1})$, let us denote by $\bar{\nu}_j$ the vector $(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n+1})$.

That means $\bar{\nu}_j$ has all the components of $\bar{\nu}$
with exception of \(v_j \). Let \(f = \psi_\rho \) and \(g_1(\vec{v}_h) \) be an \(h \)-fixed point for \(f \).

Let \(\vec{v}_{k+} = (v_1, \ldots, v_{h-1}, v_{h+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n+1}) \). Assume that \(h < i \).

Let \(g_2(\vec{v}_{k,i}) \) be an \(i \)-fixed point for \(g_1(\vec{v}_h) \).

Proposition 1: We have:

(a) \(g_2(\vec{v}_{k,i}) \) is an \(i \)-fixed point for \(f \) \((v_1, \ldots, g_2(\vec{v}_{k,i}), \ldots, v_i, \ldots, v_{n+1})\), where the argument \(g_2(\vec{v}_{k,i}) \) of \(f \) is situated on the position \(h \).

(b) The vector \((v_1, \ldots, g_2(\vec{v}_{k,i}), v_{h+1}, \ldots, v_{i-1}, g_2(\vec{v}_{k,i}), \ldots, v_{n+1})\), where \(g_2(\vec{v}_{k,i}) \) is in the positions \(h \) and \(i \), is at the same time \(h \)-model and \(i \)-model for \(\psi_\rho \).

Proof: Since \(g_1(\vec{v}_h) \) is an \(h \)-fixed point for \(f \), it follows

\[
g_1(\vec{v}_h) = f(v_1, \ldots, v_{h-1}, g_1(\vec{v}_h), v_{h+1}, \ldots, v_{n+1}) \tag{4.1}
\]

Because \(g_2(\vec{v}_{k,i}) \) is an \(i \)-fixed point for \(g_1(\vec{v}_h) \) we have

\[
g_2(\vec{v}_{k,i}) = g_1(v_1, \ldots, v_{h-1}, v_{h+1}, \ldots, v_{i-1}, g_2(\vec{v}_{k,i}), v_{i+1}, \ldots, v_{n+1}) \tag{4.2}
\]

Assume that \(h < i \).

If we take \(g_2(\vec{v}_{k,i}) \) instead of \(v_j \) in the relation (4.1) we obtain:

\[
G_2 = f(v_1, \ldots, v_{h-1}, G_2, v_{h+1}, \ldots, v_{i-1}, g_2(\vec{v}_{k,i}), v_{i+1}, \ldots, v_{n+1}) \tag{4.3}
\]

where

\[
G_2 = g_1(v_1, \ldots, v_{h-1}, v_{h+1}, \ldots, v_{i-1}, g_2(\vec{v}_{k,i}), v_{i+1}, \ldots, v_{n+1})
\]

By the relation (4.2), we have \(G_2 = g_2(\vec{v}_{k,i}) \), therefore it follows:

\[
g_2(\vec{v}_{k,i}) = f(v_1, \ldots, v_{h-1}, g_2(\vec{v}_{k,i}), v_{h+1}, \ldots, v_{i-1}, g_2(\vec{v}_{k,i}), v_{i+1}, \ldots, v_{n+1}) \tag{4.4}
\]

The statement (b) results from (a).

The following proposition considers fixed points for \(f \), \(g_1(\vec{v}_h) \) and \(g_2(\vec{v}_{k,i}) \).

Proposition 2: Let \(g_1(\vec{v}_h) \) and \(g_2(\vec{v}_{k,i}) \) as in the proposition 1. Let \(1 < h < i < n+1 \) and \(g_3(\vec{v}_{k,i}) \) be a \(j \)-fixed point for \(g_2(\vec{v}_{k,i}) \). We have:

a) \(g_3(\vec{v}_{k,i}) \) is a \(j \)-fixed point for \(f \) \((v_1, \ldots, v_{h-1}, g_3(\vec{v}_{k,i}), v_{i+1}, \ldots, v_{n+1})\).

b) \(\psi_\rho \) is an \(h \)-fixed point for \(f \) \((v_1, \ldots, v_{h-1}, v_i, v_{j+1}, \ldots, v_{n+1})\) at the same time an \(h \)-model, \(i \)-model and \(j \)-model for \(\rho \), where \(v_i = g_1(\vec{v}_{k,i}) \) and \(\vec{v}_{k,i} \) is the vector which has all components of \(\vec{v}_h \), with except of \(v_j \).

The proof is similar with that of proposition 1. For these fixed points we give the general case of this iteration. Let us consider some notations.

Notations: Let \(\beta \) be the vector of integers \((1, 2, \ldots, n + 1)\). Let \(\beta_k \) be a subset of \(k \) elements from \(\beta \). \(\gamma_k \) be the difference between \(\beta \) and \(\beta_k : \gamma_k = \beta - \beta_k \). If \(\gamma_k \) is \((i_1, \ldots, i_p)\) where \(p = n + 1 - k \), then we denote \(\vec{v}_{\gamma_k} = (v_{i_1}, \ldots, v_{i_p}) \).

Theorem 1: Let \(g_{h+1}(\vec{v}_{\gamma_h}) \) be a \(\varphi_h \)-fixed point of \(g_h \) \((\forall \gamma_h) \) for every \(h, 0 \leq h \leq k \), where \(0 < k < n + 1 \), \(\varphi_h \in \gamma_h \), \(\gamma_0 = \beta ; \gamma_0 = \varnothing ; \gamma_{h+1} = \gamma_h - \varphi_h \), \(\beta_{k+1} = \beta - \gamma_{h+1} \) for each \(h, 0 \leq h \leq k \).

The following statements hold:

a) \(g_{k+1}(\vec{v}_{\gamma_k} + 1) \) is a \(\varphi_k \)-fixed point for \(f \) \((\vec{w}_{h}, \ldots, \vec{w}_{n+1})\), where \(\vec{w}_j = v_j \) for each \(j \in \gamma_k \) and \(\vec{w}_j = g_{k+1}(\vec{v}_{\gamma_k} + 1) \) for each \(j \not\in \gamma_k \).

b) \(\vec{w}_k = g_{k+1}(\vec{v}_{\gamma_k} + 1) \) is a \(j \)-model for the program \(\rho \), for each \(j \not\in \beta_{k+1} \), where \(\vec{w}_j = \vec{w}_j \) for each \(j \not\in \beta_{k+1} \) and \(\vec{w}_j = g_{k+1}(\vec{v}_{\gamma_k} + 1) \), for each \(j \in \beta_{k+1} \).

Proof: We are using the induction on \(k \). For \(k = 1 \) the statements of the theorem result from the proposition 1. The proposition 2 specifies the case \(k = 2 \). We assume that the statement a) holds for \(k-1 \), therefore

\[
g_k(\vec{v}_h) \text{ is a } \varphi_{k-1} \text{-fixed point for } f \text{ } (w_1, \ldots, w_m), \tag{4.5}
\]

where \(w_j = v_j \) for each \(j \in \gamma_{k-1} \) and \(\vec{w}_j = g_k(\vec{v}_h) \) for each \(j \not\in \beta_{k-1} \).

By the hypothesis, \(g_{h+1}(\vec{v}_{\gamma_{h+1}}) \) is a \(\varphi_h \)-fixed point of \(g_{h}(\vec{v}_{\gamma_h}) \), for every \(h, 0 \leq h \leq k \). That means, if \(\vec{v}_{\gamma_h} = (i_1, \ldots, i_q) \), where \(q = n + 1 - h \), then we have

\[
g_{h+1}(\vec{v}_{\gamma_{h+1}}) = g_h(\vec{t}_{i_1}, \ldots, \vec{t}_{i_q}) \tag{4.6}
\]

where \(t_{\varphi_h} = g_{h+1}(\vec{v}_{\gamma_{h+1}}) \) and \(t_j = v_{j'} \) for each \(j' \).
Taking \(h = k \) in the relation (4.6), it obtains
\[
g_{k+1}(\overline{v}_{n+1}) = g_k(t_{i_1}, \ldots, t_{i_q});
\]
(4.7)
where \(\overline{v}_{n+1} = (i_1, \ldots, i_q) \) and
\[
t_{i_q} = g_{k+1}(\overline{v}_{n+1}), t_{i_j} = v_{i_j} \text{ for every } j, 1 \leq j \leq q, \ \varphi_k \neq t_{i_j},
\]
for every \(j, 1 \leq j \leq q \).
(4.8)

In the relation (4.5) we consider \(g_{k+1}(\overline{v}_{n+1}) \) instead of \(v_{\varphi_k} \) and using the relation (4.6), it results (4.5) for \(k \).

The part b) of the theorem follows from a).

For two operators with the same argument which are in the \(s_l \) ordering, we are interested if for two \(\varphi_k \)-fixed points, one of them from the first and another from the second, the same relation between them with respect to the \(s_l \) ordering exists. The following theorem emphasizes one of these situations.

Theorem 2: Let \(g_k(\overline{v}_{n}) \) and \(h_k(\overline{v}_{n}) \) be two operators which are in the \(s_l \) ordering: \(g_k(\overline{v}_{n}) \leq s_l h_k(\overline{v}_{n}) \). Let
\[
g_{k+1}(\overline{v}_{n+1}) \text{ be the smallest } \varphi_k \text{-fixed point for } g_k(\overline{v}_{n})
\]
and \(h_{k+1}(\overline{v}_{n+1}) \) be a \(\varphi_k \)-fixed point for \(h_k(\overline{v}_{n}) \). We have:
\[
g_{k+1}(\overline{v}_{n+1}) \leq s_l h_{k+1}(\overline{v}_{n+1}).
\]

For the \(s_k \) ordering a similar result follows.

Proof: Let \(h_k = (i_1, \ldots, i_q) \) and \(\varphi_k = i_p, p \in \{1, 2, \ldots, q\} \). We have the following relations:
\[
g_{k+1}(\overline{v}_{n+1}) = g_k(v_{i_1}, \ldots, v_{i_p}, g_{k+1}(\overline{v}_{n+1}), v_{p+1}, \ldots, v_q) \quad (4.9)
\]
\[
h_{k+1}(\overline{v}_{n+1}) = h_k(v_{i_1}, \ldots, v_{i_p}, h_{k+1}(\overline{v}_{n+1}), v_{p+1}, \ldots, v_q) \quad (4.10)
\]
\[
g_k(v_{i_1}, \ldots, v_{i_p}, v_{q}) \leq s_l h_k(v_{i_1}, \ldots, v_{i_p}, v_{q}) \quad (4.11)
\]

Taking in (4.11) \(h_{k+1}(\overline{v}_{n+1}) \) instead of \(v_{i_p} \), we obtain
\[
g_k(v_{i_1}, \ldots, v_{i_p}, h_{k+1}(\overline{v}_{n+1}), v_{p+1}, \ldots, v_q) \leq s_l h_k(v_{i_1}, \ldots, v_{i_p}, v_{p+1}, \ldots, v_q)
\]
(4.12)

Hence \(g_{k+1}(\overline{v}_{n+1}) \leq s_l h_{k+1}(\overline{v}_{n+1}) \).

Extended Stable Models for \(\varphi \): In the following we consider the application of fixed-point iteration on \(\Psi \varphi \).

Let \(f(v_{n+1}) \) be the operator \(\Psi \varphi (v_{1}, \ldots, v_{n+1}) \) defined for logic program \(\varphi \) with \(n \) negations. We are interested in the application of fixed point iteration on \(f \) if we denote this iteration by \(\Pi \), then we obtain chains like this:
\[
f \xrightarrow{\Pi} \overline{g}_1 \xrightarrow{\Pi} \overline{g}_2 \xrightarrow{\Pi} \ldots \xrightarrow{\Pi} \overline{g}_m
\]

In general, there exist many chains, which begin with \(f \). The application of it to \(g_i \) depends on the properties of monotony or anti-monotony for \(g_i \).

The operator \(g_i \) will be called generalized stability operator for \(\varphi \), providing the ordering considered is \(s_i \) for all iterations preceded.

The operator \(g_m \) depends on \(h \) arguments, where \(h = n + 1 - m \). Now, we need several notations for representing the fixed points of operators.

Let \(\overline{g} \) be an operator with the arguments \((v_{11}, \ldots, v_{n+1}) \) and being monotonic with respect to \(s_i \) ordering and the argument \(h \). We denote \((t, s, h)g \) the smallest fixed point under the \(s_i \) ordering for the operator
\[
g'^(\overline{v}) = (\lambda \overline{x})g(v_{11}, \ldots, v_{h-1}, x, v_{h+1}, \ldots, v_{n+1})
\]

\((t, S, h)g\) denotes the greatest fixed point under the \(s_i \) ordering for \(g'^(\overline{v}) \).

Let \(g \) be an anti-monotonic operator under the \(s_i \) ordering and the argument \(h \). The two extreme oscillation points in this ordering for \(g'^(\overline{v}) \) are denoted \((t, h)g \) and \((t, S)g \).

For the \(s_k \) ordering the smallest fixed point and the greatest fixed point are denoted \((k, s, h)g \) and \((k, S)g \) respectively and the two extreme oscillation points are denoted \((k, n)g \) and \((k, h)g \). The argument for all these points is \(\overline{v}_k \).

Let \(v_{a_1}, \ldots, v_{a_n} \) be the arguments of \(g_m \). We have:
\[
g_m(v_{a_1}, \ldots, v_{a_n}) = (\sigma_m', m', l_m') = (a_1, i_1, \ldots, y(v_{11}, \ldots, v_{n+1})
\]
where
\[
(a_1, \ldots, a_m) \cup (i_1, \ldots, i_q) = (1, 2, \ldots, n + 1)
\]
\[
\sigma_i \in \{t, k\}, i \in \{s, &, h\}, i = 1, m.
\]

If the operator \(g_m-1 \) is monotonic on \(s_i \) ordering and with respect to the argument \(i_m \), then there exist \(g'_m = (i, s, l_m)g_m \) and \(g''_m = (t, S, l_m)g_m \).

In case that the operator \(f' = \Psi \varphi \) is monotonic on \(s_i \) ordering and with respect to the arguments \(a_1, \ldots, a_m \), then the fixed point iteration can apply on \(f \) by the theorem 1, which produces an operator \(g_n(v_i) \), where \(i \in \{1, 2, \ldots, n + 1\} \) - \{a_1, \ldots, a_q\}.

If we can obtain \(g_n \), then each fixed-point of \(g_n \) is called an extended stable valuation for \(\varphi \).

Let as denote by \(w \) such a fixed-point of \(g_n \). It results that \(\overline{w} = (w, \ldots, w) \) is \(i \)-fixed point for \(\varphi \), for every \(i, 1 \leq i \leq n + 1 \). Moreover \(w \) is a model for \(\varphi \). This model \(w \) will be called an extended stable model for \(\varphi \).

Conclusion

Stable models were studied very intensively in the literature. These models come closer to capturing the meaning of logic programs with one negation that other semantics.
Victor Felea: Extended Stable Models for Logical Programs with Many Negations

We have introduced extended stable model semantics of logic programs with many negations, which extends the notion of stable model semantics for logic program with one negation.

References