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Abstract: In this paper we continue to extend ring concepts. Here we define principal ideal rings for
commutative rings (not necessarily with identity) and prove that this definition is equivalent to the usual
definition in the case of a ring with identity. Then we generalize some results for principal ideal rings. We
study direct sums, direct summands and quotient rings. We show that every Euclidean ring is a principal

ideal ring.
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Introduction
In 1949 Motzkin had proved a necessary and sufficient
condition for an integral domain to be a Euclidean ring.
Two generalizations of this concept came by Fletcher in
1969 and by Samuel in 1971. In 1977, the first
example of a Euclidean domain without any integer-
valued algorithm was given by Hiblot. In 1978-1987,
Nagata, gave his definitions. We generalize the concept
of Euclidean rings to commutative rings which do not
necessarily have an identity (Agargun, 1997). We give
seven new definitions and the relations among them.
Our definitions are equivalent to the usual definitions in
the case of a ring with identity. We generalize
Motzkin's work to give a useful result for finding the
Euclidean algorithm  (smallest algorithm) for
commutative rings. Also some examples of Euclidean
rings and the smallest algorithms are given in this
work. (Agargun, 1997). In generalising the concept of
a Euclidean ring to commutative rings we take the
opportunity of examining the connections between the
many different definitions. Hence overall we have the
three types of Euclidean ring. We generalize some
results using these group definitions (Agargun, 2000).
We study direct sums, direct summands, quotient rings
and rings of fractions. We also consider the Euclidean
property with respect to a partially ordered set with
minimum condition instead of a well-ordered set.
Let R and R’ be commutative rings, R' with identity and
let 6 : R - R' be a monomorphism where 8(R) is an
ideal of R'. Let us call this kind of monomorphism as a
G-monomorphism. Suppose a, b eR, W is a well-
ordered set and ¢ is a mapping into W. The three areas
for choice are
i. 9:R\{0}>Wore:R->W
ii. banyelementof Rorb=0,
iii. r=0 or o(r) <e(b), or

r=b or o(r) <e(b), or

o(r) < o(b).
Therefore we have seven possible definitions of
Euclidean rings.
Definition 1.1 A map ¢ : R\{0} - W s called a
Euclidean algorithm (with respectto 6: R > R") if for
all a, b eR, bz0, there exist q'eR' and r eR such that
6(a) = q' 6(b) + 6(r) where r=0 or o(r) < ¢(b).
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Similarly, we have the other definitions
consideration the three areas for choice. X
Definition 1.2: ¢ : R\{0} - W, bz0, r = b or ¢(r) <o
(b).

Definition 1.3: ¢ : R > W, b#0, r =0 or o(r) < ¢(b).
Definition 1.4: ¢ : R > W, b0, r=b or ¢(r) < o(b).
Definition 1.5: ¢ : R > W, bz0, ¢(r) < o(b).

Definition 1.6: ¢ : R > W, any b, r=0 or o(r) <o
(b).

Definition 1.7: ¢ : R > W, any b, r=Db or o¢(r) <e¢
(b). -

Here, we note that if R has an identity then by taking 6
to be the identity homomorphism then our definitions
are the same as the definitions from Amono (1985);
Lenstra (1974); Kanemitsu and Yoshida (1986);
Nagata (1985 and 1987) and Samuel! (1971).

Let us mean by the word “equivalent” that if ¢ is an
Euclidean algorithm according to one definition then it
will be a Euclidean algorithm in the sense of the other.
Then the connections between these new definitions
are the same with the results of our paper on
Euclidean rings (Agargun and Fletcher, 1995). Here we
only need to consider the elements of R with 6
according to the definitions. By allowing W and ¢ to
chance all these definitions become equivalent.
Definition 1.8: Let R be a commutative ring. If there
exists a commutative ring with identity R, a G-
monomorphism 8 : R > R', a well-ordered set W, an
algorithm

¢ : R > W satisfying one of Definitions 1.1-1.7, say
Definition 1.6, then we say that R is a Euclidean ring
with respectto@: R—>R'and¢: R—> W.

We consider now the special case where the well-

ordered set is taken to be Z%*u{0}. In general
Definition -1.5 does not imply Definition 1.6 and
Definition 1.3 does not imply Definition 1.6 since the
well-ordered set cannot change. However Definition 1.3

does imply Definition 1.5 since Ztu{0} does not have

maximal element. Therefore, the case of Z1Tu{0Y} splits
up in the two cases corresponding to Definitions 1.1-
1.5 and Definitions 1.6-1.7.

by
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Hence overall we have three types of Euclidean ring as:

i. Definition Group A: Euclidean rings with respect to

a general well-ordered set using Definitions 1.1-1.7.

ii. Definition Group B: Euclidean ringss with respect

to Z+U{0} using Definitions 1.1-1.5.

iii. Definition Group C: Euclidean rings with respect

to Ztu{0} using Definitions 1.6-1.7.

Principal Ideal Rings: In this section,we start by

giving a well-known definition.

Definition 2.1: Let R be a c.r.w.1. An ideal I of R is

called a principal ideal of R if I is generated by a single

element a eR that is I = Ra = {ra : r €R}. This is

denoted by "(a)".

Here we also give the following definition of a principal

ideal with respect to a G-monomorphism. For the

identity G-monomorphisms it is equivalent to the

previous definition.

Definition 2.2: Suppose R is a commutative ring and

6: R - R'is a G-monomorphism. Then an ideal I of R is

called a principal ideal (wrt. 8 : R » R') if o(I) is a

principal ideal of R'.

We now give our definition of Principal Ideal Ring (PIR)

for commutative rings.

Definition 2.3: Let R be a commutative ring, R' a

crw.l and 6 : R - R' a G-monomorphism. Then R is

called a Principal Ideal Ring (PIR) (wrt. 6 : R - R') if

every ideal I' of R' such that I' = ¢(I) for some ideal I

in R is a principal ideal of R'. In other words R is a PIR

(wrt. 8 : R —» R') if every ideal I of R such that o(I) is

an ideal of R' is principal, i.e. I is a principal ideal (wrt.

6:R->R").

We know the definition of PIR from the text books in

the cases when R has an identity and when it does not.

In both cases our definition is equivalent to the usual

definitions subject to a given G-monomorphism. We

show these connections in Theorems 2.5 and 2.6. First

let us give some examples.

Example 2.4:

i. nZisaPIRwrtinc.: nZ —» Z since every ideal of Z
is a principal ideal.

ii. nZisaPIRwrt.9: nZ - nZ x Z where 8(nk) =
(nk, 0). For suppose A x {0} = 6(A) is an ideal of
nZ x Z. Since A is an ideal of nZ, it is an ideal of Z.
Therefore A is principal ideal of Z. We take A = (a)
in Z for a eA. Then A x {0} = ({(a, 0)). Therefore 6
(A) is a principal ideal of nZ x Z and nZ is a PIR
(wrt. 6 : nZ > nZ x Z).

The following theorem is immediate from Definitions

2.1-2.3.

Theorem 2.5: Suppose R is a c.r.w.1. Then R is a PIR

(wrt. 1 : R - R) if and only if every ideal of R is

principal.

Let us consider the G-monomorphism 6 : R - R x Z

given by o(r) = (r, 0). Here we have the following

result. This is the usual definition of a principal ideal in

a commutative ring (Hungerford, 1974) and according

to our definition it is a special case.

Theorem 2.6: Suppose R is a commutative ring and I

is an ideal of R then I is a principal ideal (wrt. 6 : R —»

Rx Z) if and only if there exists a €I such that

I={ra+na:reR,neZ}.

Proof: Suppose I is a principal ideal (wrt. 6 : R > R x
Z). Then o(I) = I x {0} is a principal ideal in R x Z.
Therefore there exists (a, 0) 6(I) such that ((a, 0)) =
o(I). Hence

o) = {(@0)r,n)y:(r,n)eRx2Z}={(ra+na, 0):r
eR, neZ}

and this implies I = {ra+ na:rekR, neZ}.
Conversely, suppose there exists a €I such thatI = {ra
+na:reR, neZ}. Hence

6(I) =1 x {0} = {(ra + na, 0) : r eR, n eZ} =
{(a,0)(r, n) : (r, n} eR x Z} = ((a, 0)).

Therefore 8( I ) is a principal ideal of Rx Zand so I is a
principal ideal (wrt. 6 : R>RxZ).

In Theorem 2.6, if R has an identity then I = {ra+na :
reR, neZ} = {ra : reR} = (a). Hence the following
result is immediate.

Corollary: Suppose R is a c.r.w.1. Then R is a PIR
(wrt. 6 : R—> R x Z) if and only if Ris a PIR (wrt. 1 : R
— R).

Proposition 2.7: Suppose R is a commutative ring
and S is a multiplicatively closed subset (m.c.set) of R.
Then 65 : R - Rg defined by 64(r) = rs /s is a ring

homomorphism but not a G-monomorphism in general.
Proof: Suppose rq, rp R then we have for s €S,

95(r1+r2)=(r1+I‘2)S/s=rls+r25/s=|—15/s+

. ras /s =804(r1) + 8g4(r0),
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8g(ryrp) = (ryrp)s / s =rqyrpss /ss =rys/s.rys/s
= es(rl)es(rz).

Therefore 85 is a homomorphism. If S contains a zero
divisor then clearly 85 is not a monomorphism.
Because, if rs = 0 for 0 2 r eR and 0 # s €S, then 6
sN=rs/s=0/s.

Corollary: Suppose R is a commutative ring and S is a
m.c.set of R which does not contain a zero-divisor.
Then 65 : R - Rg defined by 64(r) = rs / s is a ring
monomorphism but not a G-monomorphism in general.
Proof: From the previous proposition 65 is a

homomorphism. If rs / s = 0, then for t €S rst = 0 and
this implies r = 0. Therefore 85 is a monomorphism.

But 65(R) is not an ideal of Rg in general. For we give a

counter-example in which take R = 2Z and S = 4Z \
{0}. Therefore we write 6(2)2 /4 = 2(4s)/ (4s) . 2,/
4 ¢05(R ).

Suppose 1: R —» R denotes the identity
homomorphism. We consider a subset of Rg in

Proposition 2.7, < es(R), 1RS >={rs+ns/s:reR,

s €S, n eZ}. Then we have the following proposition.

Proposition 2.8: Suppose R is a commutative ring
and S is a m.c.set of R which does not contain a zero
divisor. Then 65: R —> <85 (R), IRS > defined by

0g(r) =rs /s is a G-monomorphism.
Proof: From Proposition 2.7 Corollary 6g

monomorphism. Suppose r <R,
ris + ns/ s e< 84(R), IRS >, Then

is a
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05(r) (rys + ns/s) =rsy /sy .(rys+ns/s) = (rry +
nr)sys/ sys €8g( R).

Therefore 6g R —» < 04(R), 1lp. >

is ~
S is a G
monomorphism.

From Proposition 2.8, if R is a commutative ring and S
is a m.c.set of R which does not contain a zero-divisor
then

Bg : R > <64(R), 1R5> ={rs+ns/s:reR,seS,ne
z5H

defined by 6¢(r) rs/s is a G-monomorphism.
Therefore we have an equivalent result of Theorem 2.6
for 65 :0 R » <6g(R), 1Rs>.

Theorem 2.9: Suppose R is a commutative ring, S is a
m.c.set of R which does not contain a zero-divisor and
I is an ideal of R then I is a principal ideal (wrt. 65 : R

- <08(R), 1p..>) if and only if there exists a I such
S Rs

that I={ra+na:reR, neZ}.
Proof: Let I be a principal ideal (wrt. 85 : R - <84(R),

1Rs>). Then 6(I) is a principal ideal in <85(R), 1RS>.

Therefore there exists as/s <0(I) such that (as/s) =
(I). Hence
o(1) = {(as/s (rt+nt/t) : rt+nt/t e<64(R), 1RS>}

{ras + nas /s : r €R,s €S, n €Z} and this implies I
{ra+na:rekR,neZ}.

Conversely, suppose there exists a €l such that I = {ra
+ na:reR,neZ}. Hence

o(I) = {ras + nas /s : r eR,s €S, n eZ} =
(rt+nt/t) : rt+nt/t e<6g(R), 1RS>}= (as/s).

Therefore 6( I ) is a principal ideal of <64(R), 1RS> and
R — <6(R),

<

{(as/s

hence I is a principal ideal (wrt. 8¢ :
1p..>).
Rg™>)

Therefore the following result is immediate.

Corollary: Suppose R is a commutative ring, S is a
m.c.set of R which does not contain a zero-divisor and
I is an ideal of R then 1 is a principal ideal (wrt. 6 : R >
R x Z) if and only if Iis a principal ideal (wrt. 65 : R >

<84(R), 1RS>). Therefore we have that R is a PIR

(wrt. 8 : R > R x Z) if and only if R is a PIR (wrt. 8¢ : R
- <84(R), 1Rs>).

If our G-monomorphism is into a PIR then we have
immediately the following theorem.

Theorem 2.10: Suppose R is a commutative ring and
R'ac.rw.1. IfR'is a PIR

(wrt. 1 R - R') and o R » R is a G-
monomorphism, then R is a PIR (wrt. 6 : R > R').

Here we point out that in general R is a PIR (wrt. 6 : R
— R') does not imply R is a PIR with respect to the
restriction map 6 : R —» <08(R), 1R.>. For a counter-

example, we have that
OzeaozisaPIR(wrt.e : 026902—+Z4€BZ4)
( Example 2.15.(i )), but it is not a PIR (wrt. 6 : 02 @
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O2 - <(-)(O2 ® 02), (1, 1)>) since (-)(O2 @ 02) is not a
principal ideal of <e(02 > 02), (1, 1)>.

Theorem ‘2.11: Suppose R is a c.r.w.1 and S is a
m.c.set of R which does not contain a zero-divisor.

Then Ris a PIR (wrt. 1 : R— R) if and only if R is a PIR
(wrt. 65 : R > <64(R), 1RS>).

Proof: Since R has a identity <6g(R), 1Rs> = 6¢(R)

and hence 6g R — <6g(R), 1p.> becomes an

S

isomorphism. Therefore the proof is immediate.

For ring of factions we have the following result.
Theorem 2.12: Suppose R is PIR (wrt. 6 : R » R") and
S is a m.c.set of R not containing 0. Then Rg is a PIR

(wrt. 0': Rg —’R'e(S) given by 8'(r/s) = 6(r)/6(s)).

Proof: We know from Theorem 3.2 of (Agargun, 2000)
6' is a G-monomorphism. Let Jo = 8(Ig) be an ideal of

R'e(s), where Ig = {a/s : 8(a)/6(s) lg} is an ideal of
Rg. Consider = {a eR : as/s elg}. Here we can
easily see that I and 6(I) = {6(a) <6(R) : as/s el i.e.
8(a)o(s)/6(s) elg} are ideals of R and R' respectively.
Therefore 8(1) is a principal ideal of R', 8(I) = (8(a))
say. We prove g = (6(a)/6(s)) for some s S. For

suppose 6(b)/6(t) eJg. This implies b/t eIg and b/t ts/s
= bts/ts elg. Therefore b eI and 6(b) = 6(a)r' for some
r' eR'. Then '

o(b)/e(t) = 8(a)/o(s) o(s)r'/o(t) e (6(a)/o(s)). Also we
have 6(a)/6(s) = 6(a)o(s)/6(s) 1/6(s) Jg. Hence Jg =
(6(a)/6(s)) and this shows that Rg is a PIR (wrt. ': Rg
-»R’ 9(5))

Here we give the results for direct sums and dlrect

summands. First a finite direct sum of PIR's is a PIR.
Theorem 2.13: If R; is a PIR (wrt. §; : Rj — R'}) fori =

1,..,nthenR=R; ® .. ®RyisaPIR (wrt. 6 : Ry ®
. ®Ry—>Ry @...8R'y) where 0((ry, «er ) =
(91(!"1), ey en(l'n)).

Proof: Clearly 6 is a G-monomorphism. Suppose I' = 6
(I)isanideal inR'y & ... ® Ry

for some ideal I in R. Therefore we can write I' = I'y @

.. ® I'y such that I'j is an ideal of R'; fori =1, ..., n.
Because, take

= {a'j eR’j .3 (@yq,...,a'y el’, fora‘.l eR'J, izj=1,
v N}
If (a'y, ..., @'y) el', then @' eIy for i = 1, .., n.

Therefore (a'y, ..., a'p) el'; @ ... & ',
Conversely if (b'y, ..., b'p) el'y ® ... ® T'y, then (a'y,
. by, @' 41,00, @) €l for some a']- eR'j (izj=1, ..,

n). Since I' is an ideal of R'y & ... ® R', for (O, ..., 0,

1R'i’ 0,..,0 erRy&..8RY, (@7, a1, b

@i @0)(0; ) 0, 1R1, 0, .y 0) = (O, ..., O, B, O,
., 0) el',
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fori=1, ..., n. Therefore (b'y, ..., b'y) el' and hence I'
=I'1 ®.. &I, Now, consider I' = 6(I), where we can
write I = 1; ® ... ® I, such that I; is an ideal of R; for i
1, ..., n. Because, take I; = {a; eR; : 3 (by,..., bj_1,
aj, bjy1,.--s by) €l, for some bj eRj, i#= = 1,..., n}.
Hence if (@, ..., ap) el then (ay, ..., ap) €1 @ ...
® I,. Conversely suppose

(b1, ... by) €y ® ... & I,, we have (ay, ..., bj,
8j+1,--s Apn) €l for some ay eRj (i# = 1,..., n). Since I
is an ideal of R,

(al, aeng bi’ ai+1,..., an)(O, reny 0, ].Ri, 0,
ey 0,65, 0, ..., 0) €,
fori=1,..,nand (by,
® I,. Therefore clearly
) =0(l1&..0I,) =01(I1) & ... ®Ou(I,).

Now, we show that I = 6;(I;) for i = 1, ..., n. For
suppose a'j €l'j, then there exist

(b'l, veer bli-l' a'i, bli+1' veey b'n) el'=0(I)forizj=1,
..., N. Therefore a'; €6;(I;). Conversely if 0;(b;) <6;( ; ),
then b; elj and there exists (ay, ..., @j-1, bj, @j41s-=s
ap) el for some 3j eRj (i#j=1, ..., n). Hence
e((al, -IR Y bi’ Qjgreeer an)) = (91(31), ceeg
b bp(@apg)) el =Ty @...0I',.

This implies 8;(b;) I'; and so I'j = 6;(I;). Since R; is a
PIR wrt. 6; : Ry —» R'j fori =1,...,n, T'j = R'jx; for some
Xj €R'j. Therefore I' = I'1 ® ... ® I'y; = R'1x; & ... &
R'iXp = (R'y @ ... ® R'\)(Xq, «-es Xp)

and hence I' is a principal ideal of R'y @ ... ® R'j,.
Hence Ry @ ... ® R, isaPIR (wrt. 6 : Ry ® ... ® Ry >
Ry @..®Rp).

Theorem 2.14: If Risa PIR (wrt. 8 : R > R') and R=
Ri® ... ® R, then fori =1, ..., n each R; is a PIR wrt.
6; : Rj » R' provided that 8;(R;) is an ideal of R', where
6;(ry) = 8((0, ..., 0, rj, 0, ..., 0)).

Proof: Clearly 6; is a G-monomorphism. Suppose I' is
any ideal in R' such that I' = ¢;(I;) for some ideal I; in
R;. By the definition of §; we have

I =8((0)e..0(0)eja(0)®..2(0))=T.
Since R is a PIR wrt. 8 : R > R' then I' is principal in R'.
Therefore R; is a PIR with respect to 6; : Rj —» R' for i =

1, ..., n.
We note that the restiriction of map8 : R > R'to 6 : R
- <§i(R;), 1> gives a G-monomorphism without the

extra condition. Then the theorem falls. We give a
counter-example. Consider 6 : (02 @ 02) <] O2 -> Z4 @

Z4 @ Z4 given by
8((xq, X9, X3)) = {{y1, V2, ¥3) 1 ¥; = 21if x; = aand y;
=0 ifxi =0 fori= 1,.2, 3}.

..., 0) = (0,

..., by) el. Hence 1 = 11 & ...

0
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OZGBOZGBOZisaPIR(wrt.e : 0269026902—)24@
Z,®Z,). Take

0y : 02 @ O2 > L, ®Zy®Z, given by 91((x1, x2)) =
(-)((xl, X5, 0)). Then :

0 ¢ O2 &) 02 - <91(O2 @ 02), (1,1, 1)> is a G-
monomorphism, but O2 ® O2 is not a PIR (wrt. 0y : O2
® O2 - <e)1(02 1] 02), (1, 1, 1)>) since 91(02 D 02)
is not a principal ideal of <61(O2 ® 02), (1,1, 1)>.

Here we give some examples.
Example 2.15:
i. onsider the G-monomorphism 9 : O2 ® O2 >Z,®

Z, given by 6((xy, x5)) = {(yy, ¥5) 1 y; = 2if x
=aandyi=0ifxi=0 fori=1, 2}.
Since O2 is PIR (wrt. 0y: O2 - Z4 given by el(a)
= 2 and 01(0) = 0), from Theorem 2.15 O2 @ O2
isa PIR (wrt. 0 : 0,©0,>Z,8Z,)

il O ® O, isnotaPIR (wrt. 6 : O, ® 05 » (O2 @
02) x Z ) since e(O2 ® 02) is not a principal ideal
of (05 ® 05) x Z. '

iii. We easily see that O, is a PIR (wrt. §; : O, > O, x

Z given by el(a) = (a, 0) and 61(0) = (0, 0)).
Therefore from Theorem 2.13, O2 ® 02 is a PIR
(wrt. 8 : 05 ® 05 » (05 x Z) ® (0, x Z)). We
point out that 02 x Z is not a PIR (wrt.1 : 02 x Z
- 02 x Z) since {(x, 2k) : x e02 and k €Z} is
an ideal of O2 x Z but not principal.

We study the quotient rings of PIR's. Here we have the
following result.

Theorem 2.16: If RisaPIR (wrt. 6 : R> R) and I (#
R) is an ideal of R such that 6(I) is an ideal of R' then R
/lisaPIR (wrt. 8': R/ I — R/ 6(I) given by 0'(r + 1) =
o(r) +o( I)).

Proof: Clearly 6' is a G-monomorphism. Let J' be an
ideal of R'/ 6(I) such that J' = 0'(J) where ] is an ideal
of R / I. Then we can assume that J' = J'g / 6(1) where
¥ is an ideal of R' which contains 6(I) and similarly J
= Jg / 1 where Jg is an ideal of R which contains I
(Hungerford, 1974). By the definition of @', it is clear
that

8'( Jg /1) = 6( g )/e(D).

We prove that 8(Jg) is an ideal of R'. For suppose 6(j,),
8(jo) €6(Jg), then

8(j1) - () = 6(j1 - i), since Jg is an ideal of R, jy -
i EJO and hence 9(j1) - e(jz) €6( Jo). If Q(jo) €( Jo),
reR' thenr' +6(1) eR'/6(1) and6(g) +6(1) «6(
Jg)ye( 1) =0'(J) =1J and this implies (8(jg) + 0( I
N(' +6(1)) ). Therefore r'o(jg) + 6( 1) <6( Jg)/e(I)
and hence r'é(jo) €6(Jg) i.e 8(Jg) is an ideal of R'.
SinceR is a PIR (wrt.8:R > R'), thend(]g)isa

T
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principal ideal in R'. Therefore for 6(a) R', 6(Jg) = (6

(a)) say. Now, we show that ' = (8(a) + o(I)). For
take any element 6(jg) + 6(I) €)' where jo €Jg, then
we have in R', 0(jg) = r'e(a) for some r' eR'. Therefore
8(ig) + 6(I) = r'e(a) + o(I) = (r' + e(D))(6(a) + o(I))
(8(a) + o(1)).

Suppose (r' + 6(I))(8(a) + 6(I)) e(6(a) + 6(I)). Then
(r' + 6(I))(6(a) + 6(1)) = r'e(a) + o(I). Since 8(Jg) is an
ideal of R', r'e(a) €0(Jg). Therefore r'a(a) + 6(I) e6(
Jo)/e(I) = J'. Hence J' is a principal ideal of R'/6(I) and
¥ = (6(a) + 6(1)). Therefore R/ Iisa PIR (wrt.0': R/
I > R'/ 8(1)).

We extend the result "a Euclidean ring is a PIR
(Fletcher,1971) ” to the case where R does not
necessarily have an identity.

Theorem 2.17: Every Euclidean ring (in the sense of
Group A) is a PIR.

Proof: Suppose R is a Euclidean ring (according to
Definition 1.6 of Group A) wrt.0 : R —» R'. Take any
ideal J in R' such that J = 6(I) for some ideal I in R. Let
us show that J is principal. If I = (0) then J = (0) and
hence ] is principal. Suppose now I is a non-zero ideal
in R, then it contains non-zero elements, choose 0 = b
el such that

o(b) = min.{o(x) : x# 0, x €I} where ¢ : R > W is an
algorithm for R.

If a €I, then there exist q' eR' and r <R such that

8(a) = 6(b)q' + 6(r) with r = 0 or ¢(r) < ¢(b).

Since 6(a) e6(I) and g'6(b) e(8(b)) < o(I), o(r) is
necessarily in 6(I) = J i.e. r el. Since ¢(r) < o(b) is a
contradiction, we must have r = 0. Consequently

0(1) < (8(b)) < 6(I). Therefore J = (6(b)) in R' and R is
a PIR (wrt. 6 : R > R").

Note that here it is straightforward to check that if the
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well-ordered set is taken to be Z+u{0} then we have
immediately Theorem 2.17 in the sense of Group B and
Group C.
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