Journal of Applied Sciences

ISSN 1812-5654
Reliability Criteria for Testing the Goodness of the Activation Energy Values Obtained by the Peak Shape Methods in Thermoluminescence Experiments

1G. Kitis, 2C. Furetta and 3E. Cruz-Zaragoza
1Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
2Instituto de Ciencias Nucleares, UNAM. A.Postal 70-543, Mexico D.F., Mexico

Abstract: The aim of this study is to give some expressions able to give a criteria of acceptance for the activation energy values determined through the so called peak shape methods. The expressions are derived for both first and second order kinetics. Furthermore, using approximations concerning the peak temperature parameters, the reliability expressions are simplified for getting a more quickly criteria of acceptance. A table lists several data, from literature, concerning the activation energy determined for various Thermoluminescence materials; the experimental values are then tested using the criteria of acceptance showing the goodness of the method here presented in this research.

Key words: Thermoluminescence, peak shape methods, activation energy, acceptance criteria, first and second order kinetics

INTRODUCTION

An important and widely used method for investigating the trapping levels in crystals is based on the Thermoluminescence (TL) technique. One of the most convenient way, among the various TL methods introduced during the years, is based on the geometrical characterization of a TL glow peak, i.e. the very well known Peak Shape (PS) methods. In fact, for calculating the activation energy of the trapping level corresponding to a peak in the glow curve, one needs to measure three temperature values on the peak itself: the temperature at the maximum, \(T_M \) and the first and second half temperatures, \(T_1 \) and \(T_2 \), respectively on the ascending and descending parts of the peak.

The formulas proposed for finding the activation energy usually include the following factors:

\[\tau = T_M - T_1 \]

the half width at the low temperature side of the peak,

\[\delta = T_2 - T_M \]

the halfwidth towards the falloff of the peak,

\[\omega = T_2 - T_1 \]

the total halfwidth (FWHM).

In the following is given a list of the various expressions, for both first and second order of kinetics, allowing for the activation energy determination. All the expressions have been modified by Chen\(^4\) for getting a better accuracy in the \(E \) values.

Grosswiener\(^3\):

1st Order \((E_x)_x = 1.41k \frac{T_{T_x}}{\tau} \)

2nd Order \((E_x)_x = 1.68k \frac{T_{T_x}}{\tau} \)

The coefficient 1.41 in Eq.1 was computed by Dussel and Bube\(^3\).

Lushchik\(^4\):

1st Order \((E_x)_x = 0.976\frac{kT_x^2}{\delta} \)

2nd Order \((E_x)_x = 1.706\frac{kT_x^2}{\delta} \)

Halperin and Branner\(^5\):

1st Order \((E_{10})_x = 1.72\frac{kT_x^2}{\tau}(1-1.58\Delta_m) \)

2nd Order \((E_{20})_x = \frac{2kT_x^2}{\tau}(1-3\Delta_m) \)

Where, \(\Delta_m = 2kT_M/E \)

Corresponding Author: Dr. C. Furetta, Instituto de Ciencias Nucleares, UNAM. A.Postal 70-543, Mexico D.F., Mexico

1340
Both Eq. 5 and 6 require an iterative process owing the presence of the quantity \(\Delta M \). To avoid this difficulty, Chen modified them as following:

\[
\text{1st Order} \quad (E_{\text{1st}})_{\alpha} = 1.52 \frac{kT_m^2}{\tau} - 3.16kT_m \quad (7)
\]

\[
\text{2nd Order} \quad (E_{\text{2nd}})_{\alpha} = 1.813 \frac{kT_m^2}{\tau} - 4kT_m \quad (8)
\]

Chen also gave two more expressions based on the \(\alpha \) factor:

Chen's additional expressions:

\[
\text{1st Order} \quad (E_{\text{c}})_{\omega} = 2.29 \frac{T_M^2}{\omega} \quad (9)
\]

\[
\text{2nd Order} \quad (E_{\text{c}})_{\omega} = 2kT_m \left(1.756 \frac{T_M}{\omega} - 1 \right) \quad (10)
\]

Balariin: Balariin\cite{6} gave expressions based on the three temperatures \(T_1, T_2 \) and \(T_M \):

\[
\text{1st Order} \quad (E_{\text{c}})_{s} = \frac{T_M^2}{4998 \cdot \omega} \quad (11)
\]

\[
\text{2nd Order} \quad (E_{\text{c}})_{s} = \frac{T_M^2}{3542 \cdot \omega} \quad (12)
\]

Chen's expressions (general): The previous methods were summed up by Chen\cite{7}, who considered a general order kinetics, \(l \), ranging from 1 to 2, then giving the possibility of non-integer values for the kinetics order. The general expression is

\[
E_u = c_\alpha \left(\frac{kT_m^2}{\alpha} \right) - b_\alpha \left(2kT_m \right) \quad (13)
\]

Where, \(\alpha \) is \(\tau, \delta \) or \(\omega \). The values of \(c_\alpha \) and \(b_\alpha \) are summarized as:

\[
c_\tau = 1.51 + 3.0(\mu - 0.42) \quad b_\tau = 1.58 + 0.42(\mu - 0.42)
\]

\[
c_\delta = 0.976 + 7.3(\mu - 0.42) \quad b_\delta = 0
\]

\[
c_\omega = 2.52 + 10.2(\mu - 0.42) \quad b_\omega = 1
\]

with

\[
\mu = \frac{8}{\omega} \frac{T_2 - T_M}{T_2 - T_1}
\]

being \(\mu = 0.42 \) for a first order kinetics and \(\mu = 0.52 \) for a second order.

The previous general expression, developed just for the 1st and the 2nd orders, gives:

\[
\text{1st Order} \quad (E_{\text{c}})_{\omega} = 1.51 \frac{kT_m^2}{\tau} - 3.04kT_m \quad (14)
\]

\[
(E_{\text{c}})_{\delta} = 0.976 \frac{kT_m^2}{\delta} \quad (15)
\]

\[
(E_{\text{c}})_{\omega} = 2.52 \frac{kT_m^2}{\omega} - 2kT_m \quad (16)
\]

\[
\text{2nd Order} \quad (E_{\text{c}})_{s} = 1.81 \frac{kT_m^2}{\tau} - 4kT_m \quad (17)
\]

\[
(E_{\text{c}})_{s} = 1.706 \frac{kT_m^2}{\delta} \quad (18)
\]

\[
(E_{\text{c}})_{s} = 3.54 \frac{kT_m^2}{\omega} - 2kT_m \quad (19)
\]

Comparison among the peak shape expressions: The variability of the \(E \) values determined using the various peak shape expressions was checked at first.

Synthetic glow curves following a first or a second order kinetics were generated for various values of \(E \), keeping \(s \) constant and then for various values of \(s \), keeping then \(E \) constant. After that, to the so generated glow curves the various peak shape methods have been applied.

It was observed that the \(E \) values calculated by the H-B expressions are always bigger than the other values. Furthermore, values more closed to the assigned \(E \) are obtained by the G, L and C\(_3\) expressions.

Reliability expressions: From a theoretical point of view the various PS method do not give the same values for \(E \) because, mainly, the expressions were obtained according to different theoretical procedures as well as different approximations; furthermore, they are based on specific characteristics of the glow peak. Therefore, it seems to be correct to compare the \(E \) values obtained from expressions based on the same peak parameters, so that the relations obtained in this way could act as a test of acceptance for the \(E \) values.
The expressions so far given have been handled for getting a criteria of reliability of the \(E \) values obtained using the PS methods. In most of the cases the Chen's expressions have been used as reference because they have a more general meaning respect to the others and also give more accurate values of \(E \).

1st Order

\[
\left(\frac{E_c}{E_c} \right) = \frac{0.978K T_i^2}{0.976K T_i^2} = 1.002
\]

(20)

\[
\left(\frac{E_c}{E_c} \right) = \frac{1.41K T_i T_m^2}{1.51K T_i - 3.16K T_m} = \frac{1.07(2.09T_i-1.09T_m)}{T_i}
\]

(21)

In this case also it is necessary to calculate the limits of validity of the expression. Then, we obtain:

\[
\Delta_M = 0 \rightarrow 0.8198 \frac{T_i}{T_m}
\]

\[
\Delta_M = 0.1 \rightarrow 0.9736 \frac{T_i}{T_m}
\]

and then

\[
\left(\frac{0.8198 \frac{T_i}{T_m}}{\Delta_M=0} \right) \leq \left(\frac{E_c}{E_{ib}} \right) \leq \left(\frac{0.9736 \frac{T_i}{T_m}}{\Delta_M=0.1} \right)
\]

(23)

2nd Order

\[
\left(\frac{E_c}{E_c} \right) = \frac{1.706 \cdot \frac{K T_i^3}{\delta}}{1.71 \cdot \frac{K T_i^3}{\delta}} = 0.998
\]

(24)

\[
\left(\frac{E_c}{E_c} \right) = \frac{1.68K \cdot \frac{T_m}{T_i} \cdot \frac{T_i}{T_m} - 4kT_m}{1.81K \frac{T_i}{T_m} - 4kT_m} = \frac{0.7671 \cdot T_i}{1.8265 \cdot T_i - T_m}
\]

(25)

Because the presence of the term \(\Delta_M \) in the last expression, we need to calculate its limits of validity:

\[
\Delta_M = 0 \rightarrow \frac{1.139}{1-2.039 \frac{T_m}{T_i} - \frac{T_m}{T_i}} = \frac{1.042}{1.915 \frac{T_m}{T_i} - 1}
\]

\[
\Delta_M = 0.1 \rightarrow \frac{0.959}{1-2.093 \frac{T_m}{T_i} - \frac{T_m}{T_i}} = \frac{0.877}{1.915 \frac{T_m}{T_i} - 1}
\]

and then

\[
\left(\frac{0.877}{1.915 \frac{T_m}{T_i} - 1} \right)_{\Delta_M=0.1} \leq \left(\frac{E_{ib}}{E_c} \right) \leq \left(\frac{1.042}{1.915 \frac{T_m}{T_i} - 1} \right)_{\Delta_M=0.1}
\]

(22)

Limits:

\[
\Delta_M = 0 \rightarrow \frac{0.917 \cdot T_i}{1.83 \cdot T_i - T_m}
\]

\[
\Delta_M = 0.1 \rightarrow \frac{0.7 \cdot T_i}{1.83 \cdot T_i - T_m}
\]

so that

\[
\left(\frac{0.7 \cdot T_i}{1.83 \cdot T_i - T_m} \right) \leq \left(\frac{E_{ib}}{E_c} \right) \leq \left(\frac{0.917 \cdot T_i}{1.83 \cdot T_i - T_m} \right)
\]

(26)
\[\Delta_T = 0 \rightarrow 0.84 \cdot \frac{T_1}{T_m} \quad \Delta_T = 0.1 \rightarrow 1.2 \cdot \frac{T_1}{T_m} \]

so that

\[\left(0.84 \cdot \frac{T_1}{T_m} \right)_{\Delta_T=0} \leq \frac{E_b}{E_c} \leq \left(1.2 \cdot \frac{T_1}{T_m} \right)_{\Delta_T=0.1} \]

(27)

The expressions containing the parameter \(\omega \) are based on the three temperature values \(T_1, T_2 \) and \(T_M \). For getting the reliability expressions in this case, it is better to have only two temperature values, as in the previous expressions. For this purpose, one can consider the asymmetrical and symmetrical properties of a glow peak following a first or a second order kinetics respectively. Then, using the synthetic glow-peaks previously generated, some relations among the three temperatures \(T_1, T_2 \) and \(T_M \) can be obtained. As a convenient first approximation, one may take 0.95 \(T_M \) for \(T_1 \) in both first and second order peaks, \(T_2 = 1.036 \cdot T_M \) and \(T_2 = 1.054 \cdot T_M \), respectively for first and a second order peaks.

The following expressions can be then obtained:

1st order

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{T_1}{T_m} \left(\frac{4998}{2.52} \right) \left(1 \right) \]

from which, using the approximation \(T_1 = 0.95 \cdot T_M \), the following expression, as a function of \(T_M \) and \(T_2 \), is obtained:

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{1.16 \cdot T_M}{2.21 \cdot T_m - T_1} \]

(28)

Using the approximation \(T_2 = 1.036 \cdot T_M \), the following expression is also obtained:

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{1.16 \cdot T_M}{0.224 \cdot T_m + T_1} \]

(29)

2nd order

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{T_M}{3542 \cdot (T_1 - T_1)} \]

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{3.54 \cdot \frac{T_M}{T_1} - 2T_m}{(T_1 - T_1) \cdot k} \]

from which, using the approximation \(T_1 = 0.95 \cdot T_M \), we get

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{1.64 \cdot T_M}{2.72 \cdot T_m - T_2} \]

(30)

As before, using now the approximation \(T_2 = 1.054 \cdot T_M \), the expression as a function of \(T_M \) and \(T_1 \) is obtained:

\[\left(\frac{E_b}{E_c} \right)_{\omega} = \frac{1.64 \cdot T_M}{0.716 \cdot T_m + T_1} \]

(31)

Approximated expressions: Using the approximations of \(T_1 \) and \(T_2 \) as a function of \(T_M \), the previous expressions of reliability can be furthermore simplified.

1st order

\[\left(\frac{E_b}{E_c} \right)_{\omega} = 0.992 \]

(32)

\[1.071 \leq \left(\frac{E_b}{E_c} \right)_{\omega} \leq 1.272 \]

(33)

\[0.779 \leq \left(\frac{E_b}{E_c} \right)_{\omega} \leq 0.928 \]

(34)

\[\left(\frac{E_b}{E_c} \right)_{\omega} = 1.014 \]

(35)

2nd order

\[\left(\frac{E_b}{E_c} \right)_{\omega} = 0.991 \]

(36)

\[0.948 \leq \left(\frac{E_b}{E_c} \right)_{\omega} \leq 1.242 \]

(37)

\[0.798 \leq \left(\frac{E_b}{E_c} \right)_{\omega} \leq 1.140 \]

(38)

\[\left(\frac{E_b}{E_c} \right)_{\omega} = 0.991 \]

(39)
Table 1: The goodness of the experimental values of E, determined using the peak shape methods, is tested according the reliability expressions given in the text. The columns calculated limits and approximated limits give the range of acceptance for the expected values of the activation energy. The column experimental ratios lists the ratios calculated using the experimental values of E.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Peak No.</th>
<th>Kinetics order, b</th>
<th>T1 (K)</th>
<th>T2 (K)</th>
<th>T2 (K)</th>
<th>E (eV)</th>
<th>Ref.</th>
<th>Reliability expression</th>
<th>Calculated limits</th>
<th>Approximated limits</th>
<th>Experimental ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaF2: Tm</td>
<td>3</td>
<td>1st</td>
<td>418.4</td>
<td>437.8</td>
<td>408.5</td>
<td>(E<sub>c</sub>, k) = 1.20</td>
<td>[8]</td>
<td>[20]</td>
<td>1.002</td>
<td>1.056-1.255</td>
<td>1.071-1.272</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2nd</td>
<td>501.7</td>
<td>523.0</td>
<td>547.7</td>
<td>(E<sub>F</sub>, k) = 1.10</td>
<td>(22)</td>
<td>0.927-1.214</td>
<td>0.948-1.242</td>
<td>0.853</td>
<td>1.071</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2nd</td>
<td>409.8</td>
<td>434.5</td>
<td>461</td>
<td>(E<sub>c</sub>, k) = 1.10</td>
<td>[9]</td>
<td>[25]</td>
<td>1.001</td>
<td>0.991</td>
<td>1.000</td>
</tr>
<tr>
<td>KMF2: La</td>
<td>1</td>
<td>2nd</td>
<td>469</td>
<td>506</td>
<td>534</td>
<td>(E<sub>c</sub>, k) = 1.03</td>
<td>(24)</td>
<td>0.998</td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>KMF2: Ce</td>
<td>1</td>
<td>2nd</td>
<td>469</td>
<td>506</td>
<td>534</td>
<td>(E<sub>c</sub>, k) = 1.03</td>
<td>(24)</td>
<td>0.998</td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>(1.0 Nm/s)</td>
<td></td>
<td>Peak</td>
<td></td>
<td></td>
<td></td>
<td>(E<sub>c</sub>, k) = 1.03</td>
<td>(24)</td>
<td>0.998</td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Reliability of the method and conclusions: Table 1 lists some activation energy values from literature as well as the results obtained using the present method. The tenth column lists the limits of reliability as obtained inserting the glow peak temperatures in the various expressions. The experimental ratios are obtained as the ratios of the calculated E values. For instance, it can be observed that the (E_F/E_c)² value, calculated for the 5th peak in CaF2: Tm, is much lower compared to the other E values for the same peak. The experimental ratio (E_F/E_c)² is very low, about 15% less than the calculated limit using the peak temperatures data. In this case, it seems to be correct to reject the activation energy data obtained using the Lushchik expression. In general, the E values calculated for the different materials listed in Table 1 are in good agreement among them, according to both calculated limits and experimental ratios.

The column of approximated limits shows the limits obtained using the values of T1 and T2 as function of T_M. Also in this case it can be observed a quite good agreement between the experimental ratios and the approximated limits.

The method here presented gives a good way for testing the reliability of the experimental activation energy findings.

REFERENCES