On Multi-valued Semantics for Logic Programs

Victor Felea
Faculty of Computer Science, University "AL.I.Cuza" Iasi, General Berthelot 16, Iasi, 6600, Romania

Abstract: For a general program P, multi-valued interpretations and models are defined, considering a set of truth logic values and an undefined value. The program P may contain constant propositions, which are defined for each truth logic value. Two orderings between the set of all multi-valued interpretations are considered: one is Fitting ordering and the other is standard ordering. The semantics of type well-founded and of type stable for a program P are introduced. This study showed that the well-founded model is the least stable model with respect to Fitting ordering.

Key words: Fixed points, stable models, well-founded models

INTRODUCTION

The well-founded semantics has been introduced by Van Gelder et al.[1]. It is a 3-valued semantics. They use as truth values "true", "false" and "⊥" (an unknown truth value). They have shown that if a logic program P has a 2-valued well-founded model, then this model is the unique stable model of P.

The stable model semantics has been introduced by Gelfond and Lifschitz[2] and by Eberhard and Frodevaux[3]. Przymusinski[4] has introduced 3-valued stable models as a generalization of 2-valued stable models. He also found that the well-founded model of any program P coincides with the smallest 3-valued stable model of P.

Lucy[5] has defined a new semantics for Datalog programs, which includes the well-founded models and all stable models.

Fitting[6] has studied the structure of the family of all stable models for a logic program using two orderings; one is called the knowledge ordering based on degree of definedness, the other is called truth ordering based on degree of truth. In the first ordering every logic program has a smallest stable model, which coincides with the well-founded model.

Przymusinski[7] has introduced the well-founded model semantics for disjunctive logic programs and deductive databases. For normal programs, the partial disjunctive stable semantics coincides with the well-founded semantics.

Loyd and Umberto[8] proposed a well-founded semantics for deductive databases with uncertainty frameworks.

MalFon[9] gives a new characterization of Fitting model and of the well-founded model.

Lalloue[10] has defined a semantics for normal logic programs based on the property of composition. This semantics extends well-founded semantics and Fitting semantics.

This study defines a semantics of type well-founded and a stable semantics for the case multi-valued interpretations and points out a relationship between them.

Interpretations and models: Let P be a general logic program in sense Gelder[11]. Let H be the Herbrand base associated to P. We consider a total ordered set of truth values Lw = (0, v1,...,vn,1), where, value 0 corresponds to false, value 1 is for true and the values v1,...,vn-1 are intermediate between false and true. For every truth value v from Lw, we used a constant proposition denoted by cv and defined by cv(A) = v for every ground atom A from H. The undefined value will be denoted by u and corresponding constant by cu where, cu(A) = u for every A ∈ H. Let us denote 0 by v0 and 1 by v1. The constant propositions cv as well cu may appear in the bodies of rules from P.

Definition 1: By a multi-valued Herbrand partial interpretation I we mean a partial function from H into Lw. For an interpretation I, let us denote by V(I) the vector of sets from H:

\[V(I) = (S_0, S_1, ..., S_n) \]

where, \(S_i = \{A/A \in H \text{ and } I(A) = v_i\}, 0 \leq i \leq n \).

We denote by S the set of all remaining atoms from H - \(\bigcup_{0 \leq j \leq n} S_j \). If V = (S0, S1, ..., Sn) where, Si are disjoint sets of H, 0 ≤ i ≤ n, then there is an interpretation I, such that V(I) = V. In the case S is empty, then I is called total interpretation.

Corresponding Author: Victor Felea, Faculty of Computer Science, University "AL.I.Cuza" Iasi, General Berthelot 16, Iasi, 6600, Romania E-mail: felea@torinfoiasi.ro
Assume that L_n admits a negation, denoted $\overline{\cdot}$, which satisfies the following properties: $\overline{\overline{\cdot}} = \cdot$, $\overline{0} = 1$, $\overline{1} = 0$ and $\overline{v_i < v_j}$ implies $k_i < k_j$, for every $i,j, 0 \leq i,j \leq n$. Moreover, we consider $\overline{u} = u$.

For an atom A, such that $A \in S_n$, we write $I(A) = u$ and $I(\overline{A}) = u$, otherwise.

For a ground instantiated rule r of P, having the form: $r = A \rightarrow L_1, \ldots, L_m$, let us denote by \overline{I} (body (r)) = $\min \{ I(L_i), \overline{I(L_i)} \neq u, 1 \leq i \leq m \}$. We consider $\min \varnothing = 1$, where \varnothing is empty set.

Let M_n be the set of all ground instantiated rule of P, having A as its head. Let $v_{i,k}$ be the truth value from L_n defined by: $v_{i,k} = \max \{ \overline{I} (\text{body}(r))/r \in M_n \}$.

The interpretation I is extended to ground literals denoted \overline{I} by: $\overline{I(A)} = I(A)$ and $\overline{I(\overline{A})} = I(A)$ for every ground atom $A \in H$. In the following we define the notion of model for P.

Definition 2: An interpretation I satisfies the ground instantiated rule of P having the form $A \rightarrow L_1, \ldots, L_m$, if one of the following relations holds:

a. there is $j, 1 \leq j \leq m$, such that $\overline{I(L_j)} = 0$ or
b. $I(A) \neq u$ and $\min \{ I(L_i), \overline{I(L_i)} \neq u, 1 \leq i \leq m \} \leq I(A)$ or
c. $I(A) = u \rightarrow (I(\text{body}(r)) \setminus v_{i,k} \rightarrow (\exists i, 1 \leq i \leq m, \text{such that } \overline{I(L_i)} = u))$.

An interpretation I is a model for P if I satisfies every ground instantiated rule of P.

In the following we need to specify two ordering between interpretations. The first one denoted \leq_s is of type Fitting and the second one denoted \leq_{S_n} is of type standard.

Definition 3: Let I and J be two interpretations, such that $V_I = (S_0, \ldots, S_n)$ and $V_J = (T_0, \ldots, T_n)$. We say that $I \leq_s J$ if $S_j \subseteq T_j$ for every $j, 0 \leq j \leq n$.

We say that $I \leq_{S_n}$ if $T_0 \subseteq S_n$, $S_n \subseteq T_0$ and $S_n \subseteq T_0 \cup \ldots \cup T_{n+1}$ for every $j, 1 \leq j \leq n-1$.

Remark 1: In the case $n = 1$, the ordering \leq_s is the Fitting ordering and \leq_{S_n} is the standard ordering. These orderings were used by Przymusinski to study the well-founded semantics and three-valued stable models.

Stable semantics: Study defines here multi-valued stable models. Firstly, define an operator between the set of all interpretations of the program P. This operator will be denoted by S_n.

Definition 4: Let P be a logic program and I be an interpretation of P. We define the interpretation $S_n(I)$ in the following manner: if $v_{n+1} = (T_0, T_1, \ldots, T_n)$ then:

i. For a ground atom A, $A \in T_0$ if for every ground instantiated rule of P, having the form $A \rightarrow L_1, \ldots, L_m$, there exists $i, 1 \leq i \leq m$, such that $\overline{I(L_i)} = 0$.

ii. For every $h, 1 \leq h \leq n$, a ground atom A is considered in T_h if a) and b) hold:

a. for every ground instantiated rule of P having the form: $A \rightarrow V_1, \ldots, V_m$, we have: $\min \{ I(V_i), \overline{I(V_i)} \neq u, 1 \leq i \leq m \} = v_h$.

b. there is a ground instantiated rule of P of the form: $A \rightarrow V_1, \ldots, V_m$, such that: $\min \{ I(V_i), \overline{I(V_i)} \neq u, 1 \leq i \leq m \} = v_h$.

iii. For a ground atom A, A is considered in T_n if there is a ground instantiated rule of P having the form $A \rightarrow C_1, \ldots, C_n$, such that $\overline{I(C_i)} = 1$ for every $j, 1 \leq j \leq q$.

Proposition 2: Let P be a positive program. The operator S_n as it is defined in the definition 4 is monotonic with respect to the standard ordering \leq_{S_n}.

The proof results from the definition of the operator S_n and the standard ordering \leq_{S_n}.

The existence of the least model with respect to \leq_{S_n} for a positive program P is emphasized by the following theorem.

Theorem 1: For a positive program P, there is the least fixed point of the operator S_n with respect to the ordering \leq_{S_n}, denoted L_n. Moreover, L_n is the least model of P with respect to the ordering \leq_{S_n}.

Proof: Consider $\perp = (H, \varnothing, \ldots, \varnothing)$ the least interpretation with respect the ordering \leq_{S_n}. The model L_n is obtained applying the operator S_n ω times: $\perp, S_n(\perp), \ldots, S_n^{\omega}(\perp)$, where ω is the first ordinal.

The rest of the proof is classical, therefore it is skipped.

Now, we need to introduce an operator I^\ast defined on the set of all interpretations, which extends the operator I defined by Przymusinski.

Definition 5: Let P be a general logic program and I an interpretation. We denote by P_I the positive program, which is obtained from P by replacing in every ground instantiated clause of P, all negative literals of the form $\neg A$ by C, if $I(A) \neq u$ and by u otherwise, where $v = I(A)$. The program P_I is positive, hence applying the Theorem 1, it results that P_I admits a unique least model J with respect ordering \leq_{S_n}. The operator I^\ast is defined by: $I^\ast(I)$ = J.

Proposition 3: Let M be a fixed point of the operator I^\ast from the definition 5. Then M is a minimal model of P with respect to ordering \leq_{S_n}.

19
Proof: Let M be a fixed point of Γ^*, hence M is the least model of $P(M)$ with respect to \leq_{odr}. Firstly, we show that M is a model for P. Let r be an arbitrary ground instantiated clause from P of the form:

$$r = A - B_1, \ldots, B_p - D_1, \ldots, -D_q$$

(1)

The corresponding clause r' from $P(M)$ has the form:

$$r' = A - B_1, \ldots, B_p, c_1, \ldots, c_q$$

(2)

where, $v_i = M(D_i)$ if $M(D_i) \neq u$ and u otherwise.

It results that $M(D_j) = M(D_j) = c_j$, therefore M satisfies r' iff M satisfies r.

Secondly, it must show that M is a minimal model for P with respect to \leq_{odr}. Let M_i be a model for P, such that $M_i \leq M$. It is sufficient to show that M_i is also a model for $P(M)$ since M is the least model of $P(M)$ with respect to \leq_{odr} ordering, we obtain that $M_i \leq M_i$, hence $M_i \leq M$.

For the ground instantiated clause r having the form (1), let us denote by r' the corresponding clause to r from $P(M)$:

$$r' = A - B_1, \ldots, B_p, c_1, \ldots, c_q$$

(3)

where, $w_j = M_i(D_j)$ for every $j, 1 \leq j \leq q$.

As before, since M_i is a model for P, it obtains that M_i is a model for $P(M)$, hence M satisfies r'.

Since $M_i \leq M$ and using the definition of v_i and w_i, the following statements are satisfied:

i. if $w_i = 0$ then $v_i = 0$, for every $j, 1 \leq j \leq q$.

ii. if $v_i = 1$ then $w_i = 1$, $1 \leq j \leq q$.

iii. when $w_i = 1$ then we have: $v_i \leq w_i$, whenever $v_i \neq u$, $1 \leq j \leq q$.

iv. if $0 < w_i < 1$, then we have: $v_i \neq u$ and $v_i \leq w_i$, $1 \leq j \leq q$.

These statements imply the inequality:

$$\min \{M_i(B_i), M_i(B_j) \neq u, 1 \leq i \leq p, c_1, \ldots, c_q, v_i \neq u, 1 \leq j \leq q\} \leq \min \{M_i(B_i), M_i(B_j) \neq u, 1 \leq i \leq p, c_1, \ldots, c_q, w_i \neq u, 1 \leq j \leq q\}. \quad (4)$$

The relation (4) and the fact that M_i is a model for r' involve that M_i is a model for $P(M)$ for fixed point of Γ^*.

Definition 6: A multi-valued interpretation M for a program P is called a multi-valued stable model for P if M is a fixed point of Γ^*.

Well-founded models: For definition of well-founded models we need to introduce an operator, denoted W, defined on the set of all multi-valued interpretations.

For an interpretation I, if $J = W(I)$ and $V_J = (S_0, S_1, \ldots, S_n)$, we define the sets $S_j, 0 \leq j \leq n$.

Definition 7: Let I be an interpretation. We define the sets $S_j, 0 \leq j \leq n$ in the following manner:

a. for every $j, 1 \leq j \leq n$, a ground atom A is included in S_j iff

a1. for every ground instantiated rule r of P of the form:

$$r = A - L_1, \ldots, L_m,$$

we have: $\min \{I(L_i), I(L_j) \neq u, 1 \leq j \leq m\} \leq v_i$ and

a2. there exists a ground instantiated rule r_i of P with the form:

$$r_i = A - Q_1, \ldots, Q_n,$$

such that: $I(Q_i) \neq u$, for every $i, 1 \leq i \leq n$ and $\min \{I(Q_i), I(L_i) \} = v_i$.

b. A set of atoms V from H is called an unfounded set of P with respect to I if every atom A from V satisfies the following property:

for each ground instantiated rule r of P, having the form:

$$r = A - L_1, \ldots, L_m,$$

one of the following statements holds:

b1. there is $i, 1 \leq i \leq m$, such that $I(L_i) = 0$ or

b2. there is $i, 1 \leq i \leq n$, such that L_i is an atom and $L_i \in V$.

We consider S_j as the union of all unfounded sets of P with respect to I.

Remark 2: If V_i and V_j are unfounded sets of P with respect to I, then their union $V_i \cup V_j$ is also an unfounded set with respect to I.

Proposition 4: The operator W is monotonic with respect to Fitting ordering \leq_F. Proof. Let I and J be two interpretations, such that $I \leq_F J$. Let $V_i = (S_0, S_1, \ldots, S_n)$ and $V_j = (T_0, T_1, \ldots, T_n)$.

We have $S_j \subseteq T_j$ for every $j, 0 \leq j \leq n$. That means: if $I(L_i) \neq u$ then $I(L_i) \neq u$ and $I(L_j) = I(L_i)$, for every literal L_i.

If $V_{\leq F} = (S_0', S_1', \ldots, S_n')$ and $V_{\leq F} = (T_0', T_1', \ldots, T_n')$, then it obtains that $S_j' \subseteq T_j'$ for every $j, 1 \leq j \leq n$. (1)

The relations $S_0 \subseteq T_0$ and $S_n \subseteq T_n$ imply the following statement: every unfounded set of P with respect to I is an unfounded set of P with respect to J.

We obtain $S_j \subseteq T_j$. This relation and those from (1) involve $W(I) \leq_F W(J)$.

Now, we define a sequence of interpretations using the operator W defined above.

Definition 8: Let α range over countable ordinals. We define recursively the interpretations I_α and Γ as follows:
1. For ordinal 0, $I_0 = (\varnothing, \ldots, \varnothing)$, where \varnothing is the empty set.

2. For the limit ordinal $\alpha : I_\alpha = \bigcup_{\beta < \alpha} I_\beta$.

3. For successor ordinal $\alpha = \gamma + 1$, $I_\alpha = W(I_\gamma)$.

4. $I^\kappa = \bigcup_{\alpha} I_\alpha$.

Remark 3

i. The interpretation Γ is the least fixed point of W with respect to the Fitting ordering ε_r.

ii. There exists a countable ordinal α, such that $\Gamma = I_\alpha$.

Let us denote the interpretation Γ by I_ψ.

Theorem 2: The sequence of interpretations I_α as defined in the Definition 8 is a monotonic sequence of interpretations with respect to ε_r-ordering and moreover it is a sequence of models for P.

Proof: The monotonicity of the sequence of interpretations results from the Proposition 4.

By the Definition 2, I_ψ is a model for P. Since the operator W is monotonic with respect to ordering ε_r, it results by induction on ordinals α the following statement:

for every ground literal L and $\gamma < \alpha$, if $I_\alpha (L) \neq \sigma$ then $I_\gamma (L) \neq \sigma$ and $I_\gamma (L) = I_\alpha (L)$

Assume that I_ψ is a model for P. Let us show that $I_{\alpha + 1}$ is also a model for P, where α is an arbitrary ordinal. Let $\kappa = A - I_{\alpha + 1}$, $I_{\alpha - 1}$ be a ground instantiated rule of P. If $I_{\alpha + 1} (A) = \sigma$, then $I_{\alpha + 1}$ satisfies κ.

In the case $I_{\alpha + 1} (A) \neq \sigma$, let $V_{I_{\alpha + 1}} = (S_0, S_1, \ldots, S_n)$. There exists $i \leq j \leq n$, such that $A \in S_i$. We have $I_{\alpha + 1} (A) = \sigma$. Using the Definition 7 and the relation (1), we obtain that $I_{\alpha + 1}$ satisfies κ.

Now, let A be a limit ordinal. Assume that I_ψ for every $\beta < \alpha$ are models for P. Let us show that I_α is model.

Let $V_{I_\alpha} = (S_0^{\alpha}, \ldots, S_n^{\alpha})$. We have $V_{I_\alpha} = \left\{ U \in S_0^{\alpha}, \ldots, U \in S_n^{\alpha} \right\}$

Let r be defined as above. If $I_\alpha (A) = \sigma$, then I_α satisfies r. In the case $I_\alpha (A) \neq \sigma$, there is h, $0 \leq h \leq n$, such that $A \in \bigcup_{\beta \leq \alpha} S_\beta^{\alpha}$. The sequence of sets S_β^{α}, $\beta < \alpha$ is ascending monotonic with respect to the inclusion. Let β_i be the first ordinal such that $A \in S_\beta^{\alpha}$. We have $I_\alpha (A) \neq \sigma$ and I_α is a model for r. Since $\beta_i < \alpha$ and using the relation (1), it results that I_α satisfies r.

Stable Semantics versus well-founded semantics: In this section we point out a relation between the stable semantics and the well-founded semantics, namely the well-founded model of P is the least stable model of P with respect to ε_r-ordering.

Theorem 3: Let P be a normal logic program. Then P admits ε_ψ-least stable model. Moreover, this model coincides with the well-founded model of P.

Proof: Let I_ψ be the well-founded model for P and λ be the minimum ordinal such that $I_\lambda = I_{\psi + 1}$ (from the Definition 8).

Firstly, we show that I_ψ is a stable model for P. Let P' be $P[I_\psi]$ and M_ψ be an arbitrary model for P', such that $M_\psi \subseteq I_\psi$. It must show that $M_\psi = I_\psi$. Let V_{M_ψ} be the vector (T_ψ, \ldots, T_n) and $V_{I_\psi} = (S_0^{\lambda}, \ldots, S_n^{\lambda})$.

The relation $M_\psi \subseteq I_\psi$ is equivalent with:

i. $S_0^{\lambda} \cap T_\psi$

ii. $T_\psi \subseteq S_0^{\lambda}$

iii. $T_0 \subseteq S_0^{\lambda} \cup \ldots \cup S_{h - 1}^{\lambda}$ for every h, $1 \leq h \leq n - 1$.

Assume that $M_\psi \neq I_\psi$. Then, we have one of the following assertions:

a. $S_0^{\lambda} \cap T_\psi$ or

b. $S_0^{\lambda} \cap T_\psi$ or

c. there is h, $1 \leq h \leq n - 1$ such that $S_0^{\lambda} \cap T_{h + 1}$.

The sign "\subset" denotes the strict inclusion and "\cap" means "not included".

In the case a) let us consider α the least ordinal such that $S_\alpha^{\lambda} \cap T_\psi$, where, $V_{I_\psi} = (S_0^{\alpha}, \ldots, S_n^{\alpha})$ and I_α is specified in the Definition 8, for every ordinal α. It results that $S_\alpha^{\lambda} \cap T_\psi$ and there exists a ground atom A, such that $A \subseteq S_\alpha^{\lambda}$ and $A \subseteq T_\psi$. By the definition of S_α^{λ}, there is a ground instantiated rule r of P, having the form:

$A = B_1 \ldots B_n \ldots D_p$,

where, $B_1 \leq \gamma \leq m$ and $D_1 \leq p$ are ground atoms with the properties:

$\bar{I}_\alpha (E_j) = 1$ for every j, $1 \leq j \leq m$ and $\bar{I}_\alpha (D) = 0$ for every $1 \leq l \leq p$.
Let \(r'_j \) be the rule from \(P' \) corresponding to \(r_j \). Then \(r'_j \equiv A \rightarrow B_1,...,B_m \ c_1,...,c_q \), where \(v_j = \bar{I}_j(D_j) \) for every \(j, 1 \leq j \leq p \). Since \(S'_a \subseteq T_0 \) we obtain that \(M_i(B_j) = 1, \ j = 1, m \).
Since \(T_0 \subseteq I_0 \), it results \(I_0(D_j) = 0, \ j = 1, p \), hence \(v_j = 1 \), for every \(j, 1 \leq j \leq p \). We have: \(M_i \) is a model for \(r'_j \). This implies \(M_i(A) = 1 \), hence \(A \in T_0 \) which is impossible. Therefore, we have \(T_0 \subseteq S_a^1 \).

In the case a) let \(\alpha \) be the least ordinal, such that \(S_a^{\alpha+1} \subseteq T_h \cup \ldots \cup T_{n-1} \).

It results: \(S_a^\alpha \subseteq T_h \cup \ldots \cup T_{n-1} \).

Using the relation (1), we obtain: there is \(A, \) such that \(A \in S_a^{\alpha+1} \) and \(A \in T_h \cup \ldots \cup T_{n+1} \).

\(A \in S_a^{\alpha+1} \) implies: for every \(r \in M_0, r \equiv A \rightarrow B_1,...,B_m, I_{r} \), we have \(I_{r}(body(r)) \leq v_h \) and there is \(r_i \in M_0, r_i \equiv A \rightarrow Z_1,...,Z_q \), such that \(I_{r_i}(Z_j) = u \), for every \(j, 1 \leq j \leq p \) and \(\min \{ I_{r_i}(Z_j) \} = v_k \).

Let \(r_i \) from (5) be expressed as follows: \(r_i \equiv A \rightarrow B_1,...,B_m \rightarrow D_1,...,D_q \).

We have: \(I_{r_i}(B_j) = u, \ i = 1, m \) and \(I_{r_i}(D_j) = u, \ i = 1, q \), which implies: \(I_{r_i}(B_j) \leq v_h \) and \(I_{r_i}(D_j) \leq v_k \), \(i = 1, q \).

Let \(r'_j \) be the clause from \(P/M_0 \) corresponding to \(r_j \):

\(r'_j \equiv A \rightarrow B_1,...,B_m \ c_1,...,c_q \), where \(v_j = \bar{I}_j(D_j), \ j = 1, q \).

Since \(I_{r_j} \subseteq I_0 \) we have \(I_{r_j}(D_j) \neq I_{r_j}(D_j), \) for every \(j, 1 \leq j \leq q \), hence \(v_j \leq v_k \) for \(j = 1, q \).

We have \(I_{r_j}(B_j) = 0, \ i = 1, m \) if \(I_{r_j}(B_j) = 1, \) then \(I_{r_j}(B_j) = 1 \) and using \(T_0 = S_a^1, \) it obtains that \(M_i(B_j) = 1, \) if \(I_{r_j}(B_j) = 1 \), then using (2) it results: \(B_j \in T_h \cup \ldots \cup T_{n+1} \), hence \(M_i(B_j) \leq v_h \).
Since \(M_i \) satisfies \(r'_j \), we have \(M_i(A) \leq v_h \). We show that \(M_i(A) = 1 \). Assume the contrary: \(M_i(A) = 1 \). Using \(T_0 = S_a^1 \), we obtain \(A \in S_a^1 \).

From \(A \in S_a^{\alpha+1} \), it results \(A \in S_a^1 \), with \(h < n \).

But \(S_a^1 \cap S_a^\alpha = \emptyset \) for \(h < n \). The relations (8) and (9) constitute a contradiction.

From \(M_i(A) = v_h \) and \(M_i(A) < 1 \) we obtain \(A \in T_h \cup \ldots \cup T_{n+1} \) which contradicts the relation (3).

In conclusion for the case a), we have: \(S_a^{\alpha+1} \subseteq T_h \cup \ldots \cup T_{n+1} \), for every \(h = 1, n = 1 \).

Using (iii), it results \(S_a^\alpha \subseteq T_h, h = 1, n = 1 \).

In the case b), namely \(S_a^\alpha \subseteq T_h \), we show that \(T_\alpha \subseteq S_a^\alpha \), which will be a contradiction.

Let \(A \) be from \(T_\alpha \), hence \(M_i(A) = 0 \). Let \(r \) be a ground instantiated rule from \(P \), having the form: \(r \equiv A \rightarrow B_1,...,B_m \rightarrow D_1,...,D_q \).

The clause corresponding to \(r \) from \(P/M_0 \) is \(r' \):

\(r' \equiv A \rightarrow B_1,...,B_m \ c_1,...,c_q \), where \(v_j = \bar{I}_j(D_j), \ j = 1, p \).

Since \(M_i \) is a model for \(r' \), it follows that there exists \(i, 1 \leq i \leq m \) such that \(M_i(B_i) = 0 \) or there is \(j, 1 \leq j \leq p \), such that \(c_j = 0 \).

For every \(c_j = 0 \) we have \(I_j(D_j) = 0 \).

If \(c_j > 0 \) for all \(j, 1 \leq j \leq p \), then there is \(i, 1 \leq i \leq m \), such that \(M_i(B_i) = 0 \), hence \(B_i \subseteq T_\alpha \).

The assertions (10) and (11) say that \(T_\alpha \) is an unfounded set with respect to \(I_0 \).

If \(V_{\alpha}(T_\alpha) = (T_\alpha, T_\alpha, T_\alpha) \), then \(T_\alpha \subseteq T_\alpha \).

But \(W(I_\alpha) = I_\alpha \), hence we have \(T_\alpha = S_a^\alpha \), which implies \(T_\alpha \subseteq S_a^\alpha \) therefore a contradiction.

Thus, we have \(S_a \subseteq T_\alpha \), hence \(M_i \) - \(I_\alpha \) and \(I_\alpha \subseteq I_\alpha \) is a stable model for \(P \).

Secondly, we show that \(I_\alpha \) is \(\leq \alpha \)-least stable model for \(P \).

Let \(M_i \) be a stable model for \(P \). Let \(V_\alpha \) be defined as follows:

\(V_\alpha = (T_\alpha, T_\alpha, T_\alpha) \).

The model \(M_i \) is the least model of \(P/M_0 \), with respect to the ordering \(\leq \). Let \(I_\alpha \) be the interpretations as in the Definition 8. Let \(V_\alpha = (S_a^\alpha, \ldots, S_a^\alpha) \).

We show by induction on \(\alpha \) the following relations: \(S_a \subseteq T_\alpha \), for every \(k, 0 \leq k \leq n \).

Since \(I_\alpha = (\alpha, \ldots, \alpha) \), we have that (12) are true for every \(k = 0 \).

Assume that (12) is true for every ordinal \(\alpha < \beta \).

If \(\beta \) is limit ordinal, then (12) is true for \(\beta \).

Now let \(\beta \) be a successor ordinal, \(\beta = \alpha + 1 \).

It must show that \(S_a^\beta = T_\beta \), \(k = 0, n \).

Let us distinguish two cases:

1) \(k \geq 1 \),
2) \(k = 0 \).

In case 1) let \(A \) be from \(S_a^\beta \). We have: for every \(r \in M_\alpha \), having the form: \(r \equiv A \rightarrow Z_1,...,Z_q, \) \(\min \{ I_{r}(Z_j), \bar{I}_{r}(Z_j) \} \leq v_k \) and there is \(r_i \equiv A \rightarrow S_1,...,S_k \), such that \(I_{r_i}(S_j) = u \), for every \(j, 1 \leq j \leq p \) and \(\min \{ I_{r_i}(S_j), 1 \leq j \leq p \} = v_k \). From (12) it results:

(12)
\[I_\alpha(L) = M_\alpha(L) \text{ for every ground literal } L. \] (14)

Since \(M_\alpha \) is also a model for \(P \), we have \(M_\alpha(A) \neq u \) and moreover \(M_\alpha(A) \neq v_\alpha \). Let us denote \(M_\alpha(A) = v_i \).

If we assume that \(v_i \neq v_\alpha \), then we define an interpretation \(M_i \) as follows:

\[M_i'(B) = M_i(B) \text{ if } B \neq A \text{ and } v_i \text{ otherwise.} \]

It results that \(M_i' \) is a model for \(P/M_i \), \(M_i' \leq M_i \) and \(M_i' \neq M_i \), which contradicts the fact \(M_\alpha \) is the least model for \(P/M_\alpha \) with respect to the ordering \(\leq_{\alpha} \). Hence, we have \(v_i = v_\alpha \), i.e. \(\alpha \in T_\alpha \).

In the case 2) let \(A \) be form \(S_{i}^{\alpha^1} \).

In this case, for every \(r \in M_\alpha \) of the form: \(r = a - L_{a_{1}} \ldots L_{a_{n}} \), there is \(i \) such that \(I_\alpha(L_{a_i}) = 0 \), or there is \(i \), such that \(I_\alpha \) is atom and \(L_{a_i} \in S_{i}^{\alpha^1} \).

Using the hypothesis of induction (12), we obtain:

\[I_\alpha(L_{a_i}) = 0 \text{ implies } M_i(L_{a_i}) = 0. \]

Let \(r \in M_\alpha \) be of the form \(r = a - B_{a_j} \ldots B_{a_k} \lor a_{a_{1}} \ldots a_{a_{k}} \).

The clause corresponding to \(r \) from \(P/M_i \) is \(r' = a - B_{a_j} \ldots B_{a_k} \lor a_{a_{1}} \ldots a_{a_{k}} \text{ where } v_i = \lnot M_i(D_{a_j}), \text{ } j = 1, \ldots, p \).

If \(M_i(A) = u \) and \(M_i(A) = v_\alpha \) with \(v_\alpha \neq 0 \), then we consider a model \(M_i' \) defined by following:

\[T_0' = T_0 \cup S_{i}^{\alpha^1}, T_0'' = T_0 - S_{i}^{\alpha^1}, j = 1, \ldots, n \]

and \(V_{M_i'} = (T_0', \ldots, T_0'') \).

Since \(S_{i}^{\alpha^1} \) is an unfounded set with respect to \(M_i \), we have \(M_i' \) is a model for \(P/M_i \).

Moreover, since \(M_i' \leq M_i \) and \(M_i' \neq M_i \), it results a contradiction.

If \(M_i(A) = u \), we consider the same interpretation \(M_i' \) as it was described above, which implies a contradiction. It results the statement (13). Taking in (13) \(\alpha = \lambda \), it obtains that \(I_\alpha \leq_{\lambda} M_i \), therefore \(I_\alpha \) is the \(\leq_{\lambda} \)-least stable model for \(P \).

CONCLUSION

This study introduced new semantics for general logic programs considering a set of \(n \)-\(1 \)-truth logic values and an undefined value. One of semantics is of type well-founded and the other is of type stable. We have studied a relationship between the two semantics. For \(n=1 \) and \(u=1/2 \), the results of Przymusinski[9] are obtained.

REFERENCES