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Abstract: In this study, by using the technique of the projection and the idea of the conjugate projection, a new
algorithm is presented to solve the linear equality and inequality constrained optimization. Under some suitable

conditions which are wealcer than those in corresponding references, it is proved that the proposed method is

global convergence as well as superlinear convergence.
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INTRODUCTION

We consider the followmng linear constrained
optimization:

min  f(x)
st xeX (1)

where:

X=fxeRfx) =a"x-bz0,jeLfx)=a'x-b=0,j E}.

IUE={1,2, .. m}, INE=®, I(x) = {j € [|fi(x) =0}.

Since the gradient projection method was proposed
by Rosen (1960), 1t become one of basic methods to solve
nonlinear programming, and some authors were absorbed
in research on this method (Zhang, 1979, Tian and Zhang,
1999). However, being lack of the mformation of twice
derivatives, this type of methods converges slowly.

In order to quicken the rate of convergence, recently,
1t 15 arisen some improved algorithms (Han, 1976, Panier
and Tits, 1987, Facchinel and Lucidi, 1995). In two
references (Shi, 1996, Zhang and Wang, 1999) by
generalizing the conjugate projection from the gradient
projection, a new projection variable metric algorithm 1s
presented which is combined the penalty function method
with the varable metric algorittun. While, even under
some strong conditions (for example, the sequence {x}
converges to the optimum sclution {u*} and the
corresponding multiplier vector sequence {u"} converges
to the optimum multipliers u"), it is only proved that the
sequence {x°, u*} converges superlinearly to (x, u’),
instead of the sequence {x*} itself.

In this study, by taking advantage of the projection
gradient technique, a new general projection gradient
method is present to improve those methods (Shi, 1996;
Zhang and Wang, 1999). Under some weaker suitable
conditions, it is proved that the sequence {x*} generated
by the algorithm 1s superlinear convergent to the optimum
solution x”.

DESCRIPTION OF ALGORITHM

The following assumptions are true throughout the
study.

H 1: The feasible set X = @ and the function f;(x) 1s twice
differentiable;

H 2: ¥x € X vectors {a, ] € [(x)JE} are linear independent.

Definition 1: The function nu(x): R* = R™ 15 called a
multiplier function, if p(x) is continuous and u{x") is the
corresponding K-T multiplier vector for the K-T point x"
of (1).

For the current approximate solution x* £ X, 0,20, a
positive definite matrix B, = B(x®), the set L, c TUE, we
define:

F(x5) = (£(x9,j e L, Ac= A =(a,jeLy) 2
Q= Q(Xk) - (ATkB-IAk)-I ATkB-lk: P = P(Xk)
=BYE,- AQ)

7= R = - QuUE (9, df, = PLE () + QRVF
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7fJ(Xk)=n;( >0.j E,
VE=V(x*)=(VEje L, ),V = {77 <0,j2 E, 3)
7fJ(Xk)=jE E,

di =—QL{Id} I e+ F(x" i) .e~(L e RI.d" ~d +df

Consider the following auxiliary problem:

minG,(x) StxeR® (4)

Where
G.(x) :fu(X)HE;\f](X)\

define the directional derivative along dat xas follows:

DG, (x.d) =~ lim G, (x+td) -G, (x)

t—0* t

It 18 easy to see that

DGE(X,d):VfD(X)Td+C Y ald-c Y ‘a?d‘—c Y ajd

fi(=)=0 fi(=)=0 £ (z)<0
IEE IEE EE

The following algorithm is proposed for solving
problem (1):

Algorithm A
Step 0:

x'eX, ux)eR" B cR™
Parameters ¢e(01/2),0,e Eve(0 D

8>2,1(2,3)¢, >0,0 <y <ij=1- - m; Setk =1

Stepl:Let 1=0, 0, =0,

Step 2: If det (A", Ap=>0y;, set Iy = Ty, i, = i and go to
Step 4, otherwise, go to Step 3,where

Ly = GeT|- oy pf | < (<0} UE, A, = (a;, jely)
Step 3: Leti=i+1, 0., = 1/20,,,, go tostep 2.
Step 4: Compute

max{t,,c,_}, ©¢_, <t

_ k
t, 7maxﬂnj

e E}+ C.. G, —{
Cyi» Gy 21,

Step 5: Compute d5. If d% = 0, STOP; Otherwise,
compute d. If

DG, (x%.d%) Smin{fﬁHdﬁ

) @

go to Step 6, otherwise goto Step 7,

Step 6: Let A=1.
1) If

G, (x* +2d*) <G, (x")+adDG, (xdf) (6

c

[ (x*+hd)<0,jeT

set A, = A, go to Step 8, otherwise go to 2).
2)Let A=1/2h Tf A<€, go to Step 7, otherwise go to 1) of
Step 6.

Step 7: Compute

P =-DG,, (Xk:dﬁ)aqk =pyd; ®)

Find out By, the first number B in the sequence {1, 1/2,
1/4, ..} satisfying

Gck(xk +qu)SGck(Xk)-#—VBDGCk(Xk,qk) (9)

£+ Bq<0,j -1 a0
Set =g A, = P

Step 8: Obtamn B,., by updating the positive defimte
matrix B, using some quasi-Newton formulas. Set

k

1 k k k+1
X7 =x A du”

: :min{max{nﬁ{, d: },H},jzla“'am

Setk=k+1. Goback to Step 1.
CONVERGENCE OF ALGORITHM

Here, firstly, it is shown that Algorithm A is well
defined.

H 3: The sequence {x"} is bounded, and the sequence
{By} 1s positive definite.

Lemma 1: For any iteration, there i1s no infinite cycle
between Step 1 and Step 3. Moreover, if {Xk} —x,
keK
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then there exits a constant € >0, such that &,, =€, for

k e K, k large enough.

Proof: The proof is refereed to Lemma 1 m reference
(Zhu et al., 2003).

Theorem 1: Vi, if d, = 0, then x* is a K-T point of (1), else,
it holds that

(1)

2 St

DG, (xk,dﬁ) <0,DG, (Xk,qk) <0,a7d" <
5 - K
O,aJTq <0, I(X )
Proof: Firstly, it is easy to see that

PA, =0.BBP, =P, QA, =E

If d*, = 0, it holds that
0=A"d,=VEPVE (=0
So, form (2), (3) and H 3, we have
Vfu(xk) +A T =01, (xk) =0,je B, (xk) =0,je I(Xk)

which shows that x* is a K-T point of (1).
If d*, = 0, form the definition of V¥, it is obvicus that

aldy=-f(x".jcE

So, it holds that

EE

2 ‘aJTdE‘ -, 2 aJTdE
f_‘(xk):ﬂ f_‘(xk)<U
JEE jeE

= —Vf, (x*) VI, (x*) - VE -

Gy E fj(xk)Jrck E f](xk)

£ (Xk ))D £ (Xk )<D

jeE jeE
= V1, (x*) BVE, () +
3 ()= 3 (wt)
jeJI(xk ) ]e;(xk )

:1085-1089, 2006

+ 2 (T[ﬁ‘fck)fj(xk)+ck 2 (T[lj‘+ck)fj(xk)
()0 ()0

holds

Form the defimtion of ¢, 1t
that DG, (Xk,dﬁ ) <0 since A"d5 = V", it holds that

ajdy = V¥ je [{x")C L,

So, we have

DG, (x.q")=DG, (x*,p,d} ) =p, DG, (x*.di ) =—pf <0

pe > 0,aq" =p, V <0,je 1(x")

The conclusion holds.

Lemma 2: There exists a constant k, such that
¢, =c, 2cvk2k,.

In the sequel , we always assume that ¢, = ¢.

Theorem 2: The algorithm either stops at the K-T point x*
of the problem (1) in finite iteration, or generates an
infinite sequence {x"}, any accumulation point x" of which
15 a K-T point of the problem (1).

Proof: The first statement is obvious, the only stopping

point being step 5. Thus, suppose that {x"}. — %,

d5, = 0,k ¢ K. From (5), (6), (9) and Theorem 1, it is easy

to see that {3, (x} is decreasing. So, it holds that

Gu(x) = Gux) k= e (12)

If there exists K, ¢ K (|K,| = ), such that for all

k¢ K,, " = x*+ A,d" is generated by step 6 and step &,
then from (5), (6), we get

0=lim(G, (x*") -G, (x°)) < lim o), DG, (x*,df)

keK) =K

<lim{-asglas) <0

So, & = 0, k e K, since &, = d',, k £ K it is clear that
dy=01e,d% =0, keK. So, according to Theorem 1, it is
obvious that x* is a K-T point of (1).

Now, we might as well assume that, forall k € K,
¥ = x* + Ad" is generated for by step 7 and step 8,
Suppose that the desired conclusion is false, i.e., &, # 0.
Imitating the proof of Theorem 1,we have DG, (x, q')<0
and we can conclude that the step-size P, obtained by the
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linear search in step 7 is bounded away from zero on
K 1ie.,

ByzPe = 1nf {P,, k e K}=0, ke K

So, from (9) and Theorem 1, it holds that
0 :lljerlr{l(G:(xk+‘) - G:(Xk)) SlkiEHKkaDG:(xk,qk)

£%VB*DGC(X*,q*)<O

It is a contradiction, which shows thatd®, = 0,k e K,
k — = . So, according to Theorem 1. It is easy to see that
x*is a K-T point of (1).

In order to obtain superlinear convergence, we also
make the following additional assumptions.

H 4: The sequence generated by the algorithm possesses
an accumulation point x .

H5: DB, B,k

H 6: The second-order sufficiency conditions with strict
complementary slackness are satisfied at the K-T point x’
and the corresponding multiplier vector u'.

According to Lemma 5 in reference (Zhu, 2005), we
have the following conclusion.

Lemma 3: The entire sequence {x*} converges to X', ie.,
x*— %,k — «and for k large enough , it holds that

L, EI(X*)UE,dlE — 01" —>(uj,je I(x*)UE),k e

Lemma 4: Denote o = nf + (AR, A)™' F&H.
Under above mentioned conditions, for k large enough ,

1t helds that
V(x5 + BdS + A0F = 0, F(x + AT dY

Proof: According to Lemma 3 and H 6, it holds, for k large
enough, that ©5=0. So, from the definition of V¥, we have

AT, = VE = Fi), (xS + AT, = 0
While,

VE ) + Bdb, + Al = VE(xY)- (B, - AQIVE(x +
ALATBTAYT Vi
A (4 (ATBTAYT F(xH)
= 7Akﬂ:k - AALBTRAYT F(Xk) +
A (T + (ATBTLA) T F(x)
=0

The conclusion holds.
Lemma 5: For k large enough, there exists a constant b>0,

such that
= of ")

DG, (x*,dy ) < ~b]dt
Proof : Since x* — x'and for k large enough, L, = I(x’ U) E,
it holds that

2

&] ~es

> 3

F(xk) %(fj(x*),je Lk) =0,i—>7n ke
Thereby, there exists some 1>0, such that

>, () < T a ()| <mfF(x)|

1Ly €Ly

while, from Lemma 4 it holds that

DG, (x:.d4) = VE, (x*) i+ ¥ aTdi -
£ (=" =0
EE

c E a'df|-c 2 a'd
£ (=*)=0 ! £ (=% )< !
J€E jeE
k3T gk k K
:Vfu(x ) d, -c 2 fj(x )+c E f](x )
£; (= 10 £; Gk )<
jeE i€E
AU 3T k ~k k
<V (x*) df =—(d}) BkdU—ZLujfj(x )
el

<bas] —nfr(x)<-plei]

In addition, it holds, for k large enough, that >0,
Adekn = Vk =- E(Xk),j S Lk- So

£ {x*+di) =1, (x*)+ajdy =

0.F(x* +df)=0.df =—Qf|Jat| e

From t (2, 3), we have |d¥] ~ |d%[, [d%] = o(]d[*).

In order to obtam superlinear convergence, a crucial
requirement is that a unit step size be used in a
neighborhood of the solution. This can be aclieved if the
following assumption is satisfied.

H7:Let

B (B - VAL ()

=o{|&i])
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where

B, =E, - A (ATA,) AL

In view of Lemma 4, imitating the proof of Lemma 4.4
m reference (Zhu, 2005), 1t 13 easy to obtain the following
conclusion.

Lemma 6: For k large enough, step 7 is no longer
performed in the algorithm and the attempted search
in step 6 is successful in every iteration, ie., A, = 1,
=X+ d"

Moreover, in view of Lemma 3.8 and the way of
Theorem 2 1n reference (Panier and Tits, 15987), we may
obtain the following theorem:

Theorem 3: Under all above-mentioned assumptions, the

algorithm 1s superlinearly convergent, i.e., the sequence
{x*} generated by the algorithm satisfies

: :
[ == of " )
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