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Abstract: This study examines the problem of Automatic Speech Recognition (ASR) in the presence of additive
interfering noise. It investigates several noise reduction techniques which are integrated into the front end of
a Hidden Markov Model (HMM) isclated word recognition in order to guarantee high performance and robust
recognition system. The algorithms inherent to these techniques are studied from a theoretical view point. Their
implementation is described and they are tested on the TIMIT database for an isolated word recognition task.
Computer experiments were carried out on both clean and noisy words using four kinds of acoustic features.
Our first experiment on clean conditions showed the best performance of static acoustic features augmented
by the frame’s log energy and their first derivatives coefficients. The robustness of these kinds of features was
tested in the second experiment. The observed average loss of performance for the perceptually based acoustic
features ranges from 15 to 65% for SNR ranging from 20 to 0 dB. In the last experiment, the evaluation of two
speech enhancement techniques was performed. Results revealed the effectiveness of these two teclmiques
in such application. Tn fact, a maximum relative recognition rate improvement of performance up to 35% for SNR
of 0 dB is obtained and this with respect to the results obtained in the second experiment.
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INTRODUCTION

During the last decade, there has been much research
interest in the domain of robust speech recognition to
improve speech recognition systems. As recognition
spoken language technologies are being transferred to
real word applications, the need for greater robustness
against noisy environments is becoming increasingly
apparent. Tt is well known that the best recognition
accuracies are obtained when reference and test
utterances are collected under the same conditions
(Frikha ef al., 2005) and that when we add noise to speech
signals, a dramatic decrease of recognition performance 1s
observed. However, real word conditions differ from i1deal
or laboratory conditions, causing mismatch between
training and testing and consequently, inducing
performance degradation in the automatic speech
recognition systems. A simple special case of mismatch
situation is encountered when the testing signal is
corrupted by various additive noises while the training
data are clean. This mismatch is considered to be the main
cause of limitation in word recognition accuracies in
current state of the art speech recognition systems.

There are many levels at which improvements can be
made to system robustness. The process of providing
robustness to the recognizer can be accomplished in three
different stages: (i) the parametric stage, by means of
parametric representations of speech characteristics
which may show immunity to the neise process (Hegde,
2005), (1) the acoustical stage giving rise to speech
enhancement techniques (Choi, 2004; Cui and Alwan,
2005) and (iii) the modeling stage, combining adequate
models of noise and clean signal m order to recognize
noisy speech (Zhang and Furui, 2004).

This study 1s primarily mtended with the two first
approaches. We started evaluating the performance of
four types of acoustic features (MFCC, PLP, LPC
and LPCC) for clean and additive noisy speech and
compared their performances. And then, we addressed
the problem of enhancing speech features, which
has been degraded by additive noise, before they are fed
to the recognizer. We’ve been interested particularly in
the uncorrelated additive noise because it is frequent in
many real life situations and a great attention has been
devoted to reduce the distortion mtroduced by such type
of noise.

Corresponding Author: Mondher Frikha, Rte MZL Chaker km 1.8, Rue des Roses, SFAX, 3072, Tunisia Tel: 0021624052530
3935



J. Applied Sci., 7 (24); 3935-3942, 2007

Therefore, the main goal of this research is to reduce
the mismatch between training and testing speech by
some form of enhancement techniques and consequently
to improve the recogmtion performance. We focused on
two kinds of speech enhancement techniques which
attempt to suppress the noise from the testing speech.
The first one, named spectral subtraction, is not recent
approach since 1t was first introduced m late 70°s. But it 1s
still popular since most single microphone noise reduction
algorithms in the last decades are based on this
technique, which has become almost standard in noise
reduction (Malca et al., 1996; Okazaki et al., 2004). The
second is different from the previous one as far as it
concerns the application of the discrete wavelet transform
m the front end processing stage of the recogmtion
system. The motivation of using such techmque comes
from the fact that number of recent theoretical studies
have found that the orthogonal wavelet transform offers
a promising approach to noise removal (Farooq and
Datta, 2003; Y1 and Loizoru, 2004).

SPEECH ENHANCEMENT TECHNIQUES

A typical speech enhancement scheme mtroduced in
a recognition system is shown in Fig. 1.

Where in the recognition process, speech
enhancement techmiques tend to suppress the noise
which corrupts the speech signal before it 1s fed to the
recognizer. All these techniques are generally designed to
recover the clean speech signal by improving its Signal-
to-Noise Ratio (SNR) which 1s defined as:

SNR= 10 log,, PP:—S (1

N

Where:
P, = The power spectrum of the speech signal
Py = The power spectrum of the noise

The next subsections, formally introduce the two
speech enhancement techmques adopted m this present
study.

Noisy speech

Spectral subtraction technique: When the noise process
is stationary and speech activity can be detected, Spectral
Subtraction (33) 15 a direct way to enhance the noisy
speech. The block diagram describing the spectral
subtraction overall process is shown in Fig. 2,

Where:

* A noisy signal is overlap partitioned in short time of
milliseconds which are transformed to the frequency
domain by a Fast Fourier Transform (FFT).

*  An estimated magnitude spectrum which 1s usually
updated m speech frames 1s subtracted from each
noisy magnitude.

»  The noise reduced spectra are transformed back to
the time domain using the unchanged phase of the
noisy signal and overlap added to give the noise
output sighal.

From the theoretical view point, we assume that we
have a speech signal s(k) corrupted by an additive noise
n(k). Nowise 15 supposed to be uncorrelated with the
speech and to be non stationary. Therefore, in this case,
1t 18 possible to write:

dik) = stk n(k) (2)

The amplitude spectrum X(w) (in the frequency
domain) of a speech signal x(k) can be derived by taking
the Discrete Fourier Transform (DFT) of x(k). Tts power
spectrum is then derived as:

P, (@)=] X(w) [ (3

Since the noise power spectrum Pylw) cannot be
directly obtamed, a noise power spectrum estimate 1s
calculated by taking its average value during non-speech
activity period (Goklnm and Ozer, 2000):

P (@)=E(P, (@)} )

The hat symbol on letter stands for the estimation of
a signal or spectrum the letter represents.

Windowing
and framing

—

Speech
enhancernent

) S

Fig. 1: Speech enhancement scheme for the extraction of robust features
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Fig. 2: Spectral subtraction enhancement system bloc diagram

Since the noise 13 uncorrelated with the speech
signal, an estimate of the modified speech spectrum can
be obtamed by subtracting the noise power spectrum
estimate from the corrupt power spectrumn:

Po()=P, (@)~ B, () (3

From Eq. 5, it can be seen that the subtraction
process involves the subtraction of an averaged estimate
of the noise power spectrum from the noisy power speech
spectrum. Due to the error in computing the noise power
spectrum, we may have some negative values in the
modified spectrum. This can cause the estimated of the
clean signal to contain musical tones that can be
annoying to the listener. This problem can be solved by
means of half wave rectification. With half-wave
rectification the modified spectrum can be written as:

(6)

8 (@)_{ps(m) if By(@) > 0
0 else

The phase spectrum ¢, (w) calculated from the noisy
speech signal is used for reconstruction of the estimated
signal spectrum based on the fact that for human
perception the short time spectral amplitude i1s more
unportant than the phase for mtelligibility and quality.
This conclusion was made by Wang and Lim (1982) in
their study, when using the actual phase rather than the
degraded speech phase does not improve the quality of
the enhanced speech. Since the phase spectrum ¢p (W)
is retained (@, (w) = ¢, (w)), the estimated complex

spectrum magnitude of the clean speech signal can be
calculated:

§()=fP ()~ Bo(@) exp(pp(@)) ()

The time domain reconstruction of the clean speech
signal 1s then resynthesised through the use of an Inverse
Discrete Fourier Transform (IDFT) in conjunction with the
overlap and add (OLA) method:

3(k)=IDFT (S(e)) (8)

Nearly all later works have found that improved
results are obtained by employing noise over-estimates
and noise floors (Udrea et al., 2005). These ideas were
first introduced by the early original work of Berouti
(Beroutti et al., 1979). Equation 5 is thus transformed as
follows:

Py(@) =Py (0) — Py (@) )

(10)

ﬁs(@)—{PD(m)’ if P(0)> P, (®)
otherwise

BE, ().

Where, o1 minimizes the appearance of negative
values that generate spectral spikes and 0<P<<1 sets a
spectral flooring which reduces the perception of musical
noise. The optimal value for ¢ can be set as a function of
the SNR, as high SNR frames need less compensation
than low SNR frames.
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Fig. 3: Bloc diagram of the enhancement preprocessing stage based on DWT

Discrete Wavelet denoising technique: In Fourier based
signal processing; the out of band noise can be removed
by applying a linear time invariant filtering approach.
However, it cannot be removed from the portions where
it overlaps the signal spectrum. The denoising technique
used in the wavelet analysis is based on an entirely
different idea and assumes the amplitude rather than the
location of the spectrum of the signal to be different from
the noise. The localising property of the wavelet is helpful
in thresholding and shrinking the wavelet coefficients that
helps in separating the signal from noise. Donoho and
Johnston (1995) were first to formalize the wavelet
coefficient thresholding for removal of additive noise
from deterministic signal. The denoising by wavelet
is quite different from traditional filtering approaches
because it is non linear, due to a thresholding step.
Figure 3 shows the block diagram of the denoising
process based on thresholding the discrete wavelet
coefficients.

The denoising by thresholding of a signal d(k)
contaminated by additive noise (Eq. 2) is performed as
follows:

*  Perform the wavelet transform of the noisy data.

» Calculate the threshold & depending upon the noise
variance.

e Perform thresholding of the wavelet coefficients.

* The coefficients obtained from step 3 are then
padded with zeros to produce a legitimate wavelet
transform and this is inverted to obtain the signal
estimate.

The threshold & is calculated using the signal

obtained from the high pass filter output (detailed
coefficients) according to Eq. 11:

d=s,/2.1og(n) (11)

Where:

n = The size of the data used to calculate the threshold

s = The estimation of the noise done by using median
absolute deviation (Donoho and Johnston, 1995;
Yi and Loizou, 2004)

Usually thresholding is applied on the detailed
coefficients and the approximate coefficients (the low
pass filter output) are left untouched.

Mathematically, for the detailed coefficient d;, the
thresholding is carried out as follows:

(12)

. [signd,)(1d,|-8) if|d,|>3
"o if |d, <8

Where, sign(x) is 1 if x is positive and -1 if x is
negative. The technique of soft thresholding is also called
wavelet shrinkage because all the wavelet coefficients are
reduced. Shrinkage of the wavelet coefficients is more
helptul in reducing the noise from the signal as compared
to the hard thresholding method. The extent of denoising
depends upon the level of decomposition. For higher level
of decomposition, denoising can be applied to all the
detailed coefficients. It is possible that some of the signal
information may also be lost during the denoising process
and the loss increases with the increase in the level of
decomposition. The mother wavelet chosen for denoising
was Daubechies 4. The signal after denoising is smoother
which also causes the removal of some of the signal
components. This may cause reduction in the recognition
performance at higher signal to noise ratios for the
phonemes having high frequency components (e.g.,
fricatives).

RESULTS

Speech recognition conditions: A small vocabulary
isolated word task based on TIMIT database (Darpa,
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1990) was used for evaluation. This recognizer has been
studied and optimized in our previous research work,
(Frikha et al., 2007). The TIMIT database was recorded in
quiet conditions and sampled at 16 KHz Model traimng
and evaluation were performed using HTK 3.2 program
package (Young et al., 2002). The performance of the
recogniser was measured in terms of word accuracy
(WAC):

N-5-D-1 (13)

WAC = » 100%

Where:
N The total No. of words m the test set

S = The No. of substitution errors
D = The No. of deletion errors
I = TheNo. of insertion errors

Ten words selected from the two sentences sal and
sa2 from the eight dialect region (DR1... DRE) were used
for the traming and testing the recogmzer. Each
vocabulary word was modelled by 3 emitting states left to
right HMM with one Gaussian compenent per state and
no skip transition. The traimng set contains 4620 words
whereas the testing set contamns 1680 words (respectively
462 and 168 repetitions of each of the 10 words m the
vocabulary).

For the purpose of evaluating the robustness against
environmental additive noise, 4 different types of noise
were added to the test data with different Signal to Noise
Ratios (SNR) including 0, 5, 10 and 20 dB, while those of
the training data are kept free of noise. The typical types
of noise include white Gaussian noise, babble noise,
factory noise and pink noise all extracted from NOISEX
database (Varga ef al., 1992). Noisy speech was generated
i the following way: for each speech file mn the test
corpus, a noise segment of length equal to the length of
the speech file was randomly extracted, multiplied by a
gain factor which depends on the desired SNR and added
to the speech file.

Four basic kinds of feature vector in the acoustic
front-end of the isolated word recognition system were
considered (MFCC, PLP, LPC and LPCC). Those vectors
were computed, using the waveform analysis tools
provided with HTK, every 10 ms using 25 ms Hamming
analysis window.

The acoustic model for a given word 1s chosen to be
Hidden Markovian (HMM) (Rabiner, 1989). The
estimation of the parameter sets of the HMMs 15 usually
performed using the Expectation-Maximization (EM)
algorithm by the Maximum Likelihood (ML) function of

the HMM (Dempster et al., 1977) for a given sequence of
speech signal.

Experimental results: Comparative experiments are
conducted with the previously mentioned acoustic front
end features. Typically, a speech recogmtion feature
vector consists of 12 static coefficients (C,, C,,..., Cp) to
which might be added one of the following component: a
log energy (_E), first derivative (D), log energy and first
denivative (D _E), first derivative and second derivative
( D _A), log energy, first derivative and second derivative
(_E D A) It 1s believed that the addition of the first and
second derivatives of the static features should amelicrate
the performance of the recognizer (Furui, 1986).

The goal of our first experiment was to study the
performance of each kind of feature in clean environments
(Table 1).

As can be noticed and for all kinds of features,
the best performance of the isolated word recognition
system 1s obtained with static parameters appended by
log energy of the frame and their first derivative
components, since for that kind of feature, we get an
overall relative improvement in performance of 9.5% over
static features. Therefore, we adopt this kind of features
for our remaining experiments. Also, we noticed the poor
performance of the LPC features m comparison with
MFCC, PLP and LPCC. The second experiment was
targeted on the study of the performance of the
recognition system in noisy environments. The four kinds
of acoustic features augmented by the log energy of the
frame and first derivative components were maintained
(Table 2).

From the obtained results, we noticed the
degradation of the performance of the recognition system
caused by the mismatch between traimng and testing
conditions especially at low SNR levels. We believe that
this is due to the fact that, at such SNR levels, it is
difficult to estimate accurately clean features from noisy
speech because the Expectation-Maximization (EM)
algorithm may converge to a wrong solution if the
mismatch between training and testing conditions is too
large.

The large mismatch causes a bad initial condition of
EM algorithm and in turn leads the EM algorithm to
converge to unexpected pomnt (Ephraim and Merhav,
2002).

Table 1: Performance of the recognition system for different acoustic

features
Acoustic featres Static E D ED DA EDA
MFCC 9821 9869 98.87 98.9 98.87 98.63
PLP 98.27 9857 98.87 99.0 98.87 98.75
LPCC 9696 97.86 98.69 98.7 98.57 98.39
LPC 81.60 85.53 26.19 87.3 79.69 85.71
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Table 2: Performance of the system tested under four noise conditions
Feature kind

MFCCED PLPED LPCED LPCCED

Environment Word Accuracy (WAC) in (99)

Clean

Nuoise conditions 98.93 98.99 87.25 98.69
SNR =20 dB

Pink 85.71 85.17 43.72 81.77
Factory 87.02 86.72 45.03 86.24
Babble 88.33 88.27 62.42 87.97
White 77.13 77.13 48.42 70.10
Average 84.55 84.32 49.90 81.52
SNR =10 dB

Pink 57.73 57.18 26.98 50.80
Factory 71.05 70.52 30.08 66.89
Babble 86.72 87.14 40.08 86.42
White 46.75 46.75 29.12 33.00
Average 65.56 65.40 31.57 59.28
SNR =5 dB

Pink 39.31 37.76 18.58 30.67
Factory 48.18 47.65 19.00 41.87
Babble 79.99 82.61 22.99 73.14
White 34.04 34.07 22.87 24.78
Average 50.38 50.52 20.86 42.62
SNR =0 dB

Pink 31.51 27.58 12.33 24.06
Factory 34.66 32.70 14.71 29.24
Babble 57.30 58.49 13.04 39.19
White 28.65 28.65 17.57 22.69
Average 38.03 36.86 14.41 28.80

Table 3: Performance of the enhancement techniques based on Spectral
Subtraction (88) and Discrete Wavelet Transform (DWT)
Word accuracy (%)

98.93
Clean Enhancement technique
Environments Noisy 338 DWT
Average 20 dB 84.55 93.67 95.83
10 dB 65.56 79.48 80.11
5dB 50.38 66.50 64.85
0 dB 38.03 51.29 47.04

The goal of our final experiment was basically to
investigate the two enhancement techniques theoretically.
Those techniques are based on the Spectral Subtraction
(S3) justified by Berout1 ef af. (1979) study and a novel
discrete wavelet (DWT) procedure based on Farooq and
Datta (2001) study. The algorithms inherent to those
techniques were all implemented in Matlab. We’ve been
mterested only on the feature kind MFCC E D since it
leads to the best performance according to our previous
experiments (Table 3).

EVALUATION RESULTS AND DISCUSSION

Owr first experiment is conducted to evaluate the
effectiveness of several signal processing schemes used

as acoustic front ends of an isolated word recognition
system 1n clean
representations of acoustic signal were compared: MFCC,
PLP, LPCC and LPC. Those static parameters were
eventually appended by the frame’s log energy and their
first and second derivatives coefficients. Results showed
that best word accuracy obtamed for static features
augmented by the frame’s log energy and their first
derivatives. We also noticed the poor performance of LPC
front end when compared with the cepstrum and the
perceptual parameters (MFCC, PLP and LPCC). It is
believed that those kinds of parameters succeed better
than LPC in capturing the relevant mformation to the

environments. Four parametric

recognition system (Jankowski er al, 1995). Also, 1t 1s
worth noting the almost same recognition performance
obtained by the perceptually based acoustic features
(MFCC and PLP).

Our second experiment 15 intended to compare the
of the four static acoustic front ends
appended by the frame’s log energy and their first

robustness

derivatives coefficients. We aimed to provide mformation
of those features to noise. The HMM isolated word
recognition system was therefore tested under four
additive noise conditions. The average relative loss of
performance 1n % of the recognition system over to that
performed in clean conditions 1s summarized in Table 4.

From this experiment, we point out the significant
average loss of performance of the recognition system
which obviously depends on the SNR level. However,
when the perceptual appended acoustic features
(MFCC E D andPLP_E D) are considered, the observed
average loss of performance is within 15% to 65% for SNR
ranging from 20 to 0 dB. Moreover, LPC based front end
seems to be not immune to noise since with such kind of
feature, the average relative loss of performance
significantly drops to 43% for SNR= 20 dB and reaching
84% for SNR=0 dB.

Fmally, two pre-processing speech enhancement
techmques respectively based on Spectral Subtraction
(35) and Discrete Wavelet Transform (DWT) were
evaluated. Only the MFCC E D acoustic features were
considered for this experiment. The average relative
recognition rate improvement of the implemented
enhancement algorithms with regard to the performance
of the recognition system in noisy environment is shown
in Table 5.

From the obtamned results, 1t 1s worthwhile to note the
best performance of the 33 over the DWT enhancement
technique at low SNR levels (0 and 5 dB). In fact, the S5
technique assures an average improvement rate of
performance around 35% and around 32%, respectively
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Table 4: Relative loss of performance of the recognition system in noisy
environments
Average relative loss of performance (96)

Feature kind
SNR. MFCC E D PLP ED LPCC ED LPCED
20dB 14.5 15.0 17.5 42.8
10dB 34.0 34.0 40.0 4.0
5dB 49.1 49.0 57.0 T6.1
0dB 6l.6 65.6 70.1 83.5

Table 5: Recognition rate improvernent brought by the implemented speech
enhancement techniques
Recognition rate improvernent (%o)

Enhancement technigue

SNR S8 DWT
20dB 10.8 134
10dB 21.3 22.2
5dB 32.0 288
0dB 34.9 23.7

for SNR of 0 and 5 dB. At high SNR levels (10 and 20 dB),
the improvement brought by the DWT enhancement
technicue is slightly better than that of the SS. We believe
that the signal, obtamned after denoising with the DWT
enhancement technique, 1s smoother which causes the
removal of some of the signal components at high noisy
conditions. This may cause reduction in the recognition
performance at lower signal to noise ratios for the
phonemes having high frequency components (e.g.,
fricatives).

CONCLUSIONS

In this study, we studied two categories of robust
speech recognition problem from the view point of
parametric representations of speech characteristics and
front end acoustic stage compensation. Four standard
static acoustic features (MFCC, PLP, LPCC and LPC)
eventually appended by log energy of the frame and their
first and second derivative components and two speech
enhancement techniques based on spectral subtraction
and discrete wavelet transform were studied 1n a speaker
independent 1solated word recogmition tasks. Several
experiments have been carried out in both clean and
additive noisy environments. Following are some of our
findings:

* Best performance of the recogmition system 1s
obtamed with static parameters appended by log
energy of the frame and thewr fust derivative
components, since for that kind of feature; we get an
overall relative improvement of performance of 9.5%
over static features.

* Almost the same recogmtion results are obtained
with the perceptually based acoustic features (MFCC
and PLP). Moreover, those representations
outperform the LPC and LPCC characteristics.

¢ When tested under additive noisy conditions, an
average loss of performance of the recogmtion
system of about 15 to 65% for SNR ranging from
20 to 0 dB is observed when the perceptual appended
acoustic features (MFCC E D and PLP E D) are
wed. Moreover, LPC features seems to be not
immune to noise since with such parameters, the
word accuracy of the recogmizer significantly
drops to 43% for SNR = 20 and to 84% for
SNR =0 dB.

» It 18 shown that the utilisation of the speech
enhancement technique based on discrete wavelet
transform does not result in a clear advantage over
spectral subtraction when used in our application
at low SNR values (0 and 5 dB). At high SNR levels
(10 and 20 dB), the discrete wavelet transform
enhancement techmique achieves slightly better
recognition rate improvement than that of spectral
subtraction.
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