Nickel(II) Complexes with Sulphonylhydrazone Derivatives: Spectroscopic and Electrochemical Studies

1A. Reguig, 2M.M. Mostafa, 3L. Larabi and 1Y. Harek
1Département de Chimie, Faculté des Sciences, Université Abou Bakr Belkaid, Tlemcen, Algérie
2Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract: The synthesis and characterization of benzene and p-toluenesulfonylhydrazones derived from salicylaldehyde and 2-hydroxyl-1-naphthaldehyde and their Ni(II) complexes are reported. The structural investigation of these compounds was based on elemental analysis, magnetic moment and spectral (ultraviolet, infrared and 1H-NMR). The Ni(II) complexes were diamagnetic. The stoichiometry of all the complexes was found to be 1:2 and the geometry around the nickel ions is square planar. The electrochemical behavior of the Ni(II) complexes was investigated in DMSO by cyclic voltammetry (CV), rotating disc electrode (RDE) and coulometry. The complexes displayed Ni(III)/Ni(II) couples irreversible waves and the substitution of the phenyl by naphthyl fragments causes a negative shift in the formal potential.

Key words: Sulphonylhydrazone, Ni(II) complex, cyclic voltammetry, rotating disc electrode

INTRODUCTION

It is known that the transition metal complexes play a central role in the conduction of molecular materials, which display unusual conducting and magnetic properties and find applicability in material chemistry, supramolecular and biochemical (Chandra and Kumar, 2004, 2005; Chandra et al., 2006). The hydrazide derivatives as ligands for transition metal ions constitute an important class of ligands which have been extensively studied in coordination chemistry mainly due to their facile synthesis, their photometric effect (Wong and Bruscatu, 1968; Zady et al., 1975; Jacques, 1984; Becker and Chagnonu, 1992; Bulanov et al., 2002; Hadjoudis and Mavridis, 2004), their physico-chemical properties and application in many important chemical processes that include sensors, non-linear optics, medicine and others (Armstrong et al., 2003; Schmitt et al., 2003; Bakir et al., 2004). It is well established that transition metals are readily susceptible to oxidation and reduction because of their ability to easily change oxidation states. Thus, the high oxidation state transition metal complexes are well known to be biologically important and interesting because of their redox enzymes properties (Marguerum et al., 1975; Baur et al., 1971; Ruiz et al., 1997; Cervera et al., 1998).

The redox properties include oxidation of the central metal ion with ligands which have been previously studied and reported by Larabi et al. (2003). The redox potential of the Cu(II)/Cu(III) and Ni(II)/Ni(III) complexes have been shown to be markedly affected by the nature of the chelating ligand with the complexes (Larabi et al., 2003; Schmidt and Chinielewski, 2003).

In earlier research (Larabi et al., 2003) salicylaldehyde benzene sulfonilhydrazide (SBSH), naphthaldehyde benzene sulfonilhydrazide (NBSH), salicylaldehyde p-toluenesulfonilhydrazide (STSH) and naphthaldehyde p-toluenesulfonilhydrazide (NSTH) (Scheme 1) were synthesized and the structures of their Cu(II) complexes were reported. The present study is concerned with the elucidation of these ligands structures by the use of spectroscopic methods (UV, IR and 1H-NMR). In addition, information about the stereochemistry of their Ni(II) complexes has been obtained from spectral measurements. It is worthwhile to note that little attention on the electrochemical behavior of metal complexes derived from hydrazide derivatives was given. In order to contribute in this area, it is studied extensively the electrochemical properties of the Ni(III)/Ni(II) couple, which was affected by the donor environments. So, the present study is also to investigate the capacity of the chelating ligands under investigation to stabilize nickel(III) complexes and to elucidate the mechanism of the oxidation process by means cyclic voltammetry, rotating disc electrode and bulk electrolysis techniques.

Corresponding Author: L. Larabi, Département de Chimie, Faculté des Sciences, Université Abou Bakr Belkaid, Tlemcen, Algérie, Tel: 002134381018 Fax: 0021343286308

3191
MATERIALS AND METHODS

All the chemicals used for the preparation of the ligands were of BDH quality. Conductivity measurements were carried out in DMF (ca. 10^{-3} mol L^{-1}) using a Tacussel conductivity bridge model 75. Magnetic susceptibilities were determined using a Johnson Matthey balance at room temperature (25°C) with Hg[Co(SCN)₄] as standard. Perkin-Elmer PE 988 and Pye Unicam model SP. 3-300 spectrophotometers were used to record the IR spectra using KBr pellets and as Nujol mulls between CsI plates. UV-visible spectra were recorded in Nujol, in acetone and chloroform on a Perkin-Elmer model 550-S spectrometer. ^1H-NMR spectra were recorded using Bruker Ac 200 spectrophotometer at Strasbourg University (France). Elemental analysis were carried out in the Micro-analytical unit at Cairo University (Egypt). The electrochemical experiments were carried out using a Trace-lab50 from Radiometer which includes a polarographic analyzer (Pol 150), a polarographic stand (MDE 150) and trace Master 5 software. Cyclic voltammetry was performed using a conventional three electrodes system. The working electrode was a pre-polished glassy carbon (GC) disc of 3 mm diameter (Radiometer). Potentials are expressed versus the Ag/AgCl (KCl 3 mol L^{-1}) electrode separated from the test solution by a salt bridge containing the solvent/supporting electrolyte. The auxiliary electrode was a platinum wire. The RDE study was performed using Radiometer model CTV101 rotating disc electrode. The rotating speed ω was regulated by an Asservitex model CTV101 from the Radiometer.

The following solutions were studied: 0.5, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0 and 4.5 mmol L^{-1} of complexes in DMSO and 0.1 mol L^{-1} N(Et)_4ClO_4 as supporting electrolyte.

Caution: N(Et)_4ClO_4 is sensitive to shock or heat. The RDE voltammograms were recorded in each solution, using a scan rate of 5 mV sec^{-1} and rotating speeds ω of 25, 50, 75, 100, 150, 200, 300 and 400 rpm. In The CV measurements, scan rate v of 10, 25, 50, 100, 200, 400, 500, 1000 and 2000 mV sec^{-1} were employed. All experiments were carried out at 25°C ±0.1 using a Julabo thermostat. In the coulometric experiments, the auxiliary electrode was separated from the solution by a glass frit disk and the working electrode was controlled by a Radiometer PGP201 potentiostat.

Synthesis of the ligands: Benzene and p-toluenesulphonylhydrazine (BSH, TSH) were prepared according to literature procedures (Vogel, 1989) and the ligands SBSH, NBSH, STSH and NTSH were synthesized as reported earlier (Larabi et al., 2003).

Synthesis of the complexes: The metal complexes were prepared using a general method. A hot absolute EtOH solution of Ni(II) acetate (1 mmol) was added to a hot solution of corresponding ligand (2 mmol) in EtOH with continuous stirring. The precipitated was filtered off hot, washed several times with an absolute EtOH and dried in a dessicator over silica gel.

RESULTS AND DISCUSSION

Structural studies: Analytical results and physical properties of the ligands and the product complexes are given in Table 1. They are air-stable, insoluble in most common organic solvents but easily soluble in DMF and DMSO. The molar conductivities of the complexes in DMF (25°C) are in the 3-7 cm-mol^{-1} cm^{-2} range, indicating a non-electrolytic nature (Geary, 1971).

The position of the significant IR bands of all ligands (H₂L₁, H₂L₂, H₂L₃ and H₂L₄) and their nickel(II) complexes are summarized in Table 2. The IR spectra of H₂L₁ show two bands at 3020 and 2880 cm^{-1} assignable to γ₉OH and γ₉OH vibrations, respectively. These bands are observed at 3420 and 2920 cm^{-1} for H₂L₄. The existence of those bands at lower wave-numbers suggests the presence of intramolecular hydrogen bonding of the type (O-H...N) (Bullock and Tajmir-Riahi, 1978). Also, the spectra show strong band at 3160 for H₂L₁ and 3200 cm^{-1} for H₂L₄ assigned to γNH vibration. Moreover, the

Scheme 1: Presentation of the ligands

SBSH (H₄L₁); R = H
STSH (H₄L₂); R = CH₃

NBSS (H₄L₃); R = H
NTSH (H₄L₄); R = CH₃
The UV spectra of H$_2$L$_4$ and H$_2$L$_5$ in acetone show four bands. H$_2$L$_4$ exhibits the bands at 438, 370, 330 and 304 nm while H$_2$L$_5$ shows the bands at 430, 412, 380 and 340 nm. These bands are assigned to π→π* (SO$_2$), π→π* (C=N), π→π* (SO$_2$) and π→π* (C=N), respectively (Rao, 1975). On the other hand, the UV spectra of H$_2$L$_3$ and H$_2$L$_4$ in acetone show five bands. H$_2$L$_3$ shows bands at 450, 418, 376, 360 and 330 nm while H$_2$L$_4$ exhibits bands at 450, 438, 380, 360 and 328 nm. These bands may be assigned to π→π* (SO$_2$), π→π* (C=N), π→π* (SO$_2$) and π→π* (C=N) and π→π* (naphthyl), respectively (Rao, 1975). It is interesting to point out that the above-mentioned bands are split into two for each band in CHCl$_3$. This suggests that the ligands exist in two forms (free and hydrogen-bonded) upon dissolving in CHCl$_3$, as shown in Scheme 3.

In comparing the IR spectra of the Ni(II) complexes with the parent ligands (Table 2), we observed that the ligands behave more or less in the same way. The ligands coordinate in a bidentate manner via the azomethine group (C=N) and the OH (phenolic or naphtolic) groups forming six-membered rings including the metal ions.

The displacement of a hydrogen atom from the OH group is proved as follows:

The pH drop and the conductance increase upon successive addition of ligand solution to titrating against Ni(II) acetate solution prove the liberation of ethanoic acid during complex formation. The spectral data (IR and 1H-NMR) confirm participation of OH in bonding. Thus, the γOH disappears, the C=N band shifts to lower wave number and new bands appear in the 560-520 and 430-410 cm$^{-1}$ regions assignable to γ(M-O) and γ(M-N) (Ferraro, 1971; Chandra et al., 2005), respectively. The latter result supports the involvement of nitrogen in coordination. Finally, the test of OH group by spot test technique (Feigl, 1982) is negative.

The diamagnetic behaviors as well as the observation of a broad band centered at ca. 476 nm assigned to 1A$_{2g}$→1A$_{2g}$ transition are evidences for square-planar geometry (Lever, 1968; Sacconi, 1966) around the nickel(II) ion. The disappearance of the OH proton and the existence of the NH proton in the 1H-NMR spectra of the nickel complexes, prove the replacement of a hydrogen atom from the OH group only.

Electrochemical studies: The electrochemical behavior of all the Ni(II) complexes are similar in the same conditions and depends on the potential range. The cyclic

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Color</th>
<th>M.P. (°C)</th>
<th>% C found (Calcd.)</th>
<th>% H found (Calcd.)</th>
<th>% N found (Calcd.)</th>
<th>% Ni found (Calcd.)</th>
<th>Δm in DMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ni(HL)$_3$]</td>
<td>Grass green</td>
<td>>260</td>
<td>51.1 (51.3)</td>
<td>3.6 (3.6)</td>
<td>9.2 (9.2)</td>
<td>9.2 (9.6)</td>
<td>7</td>
</tr>
<tr>
<td>[Ni(HL)$_2$L]</td>
<td>Yellowish-green</td>
<td>>260</td>
<td>58.9 (57.6)</td>
<td>3.7 (3.7)</td>
<td>8.0 (7.9)</td>
<td>8.2 (8.3)</td>
<td>3</td>
</tr>
<tr>
<td>[Ni(HL)L]</td>
<td>Yellowish-green</td>
<td>>260</td>
<td>52.8 (52.8)</td>
<td>4.0 (4.1)</td>
<td>8.8 (8.8)</td>
<td>9.0 (9.2)</td>
<td>5</td>
</tr>
<tr>
<td>[Ni(L)$_2$]</td>
<td>Olive green</td>
<td>>260</td>
<td>58.7 (58.6)</td>
<td>4.3 (4.1)</td>
<td>7.6 (7.6)</td>
<td>7.6 (8.0)</td>
<td>3</td>
</tr>
</tbody>
</table>

*O$^{-1}$cm$^{-1}$mol$^{-1}$

Table 2: Infrared spectra of the ligands and their metal complexes

<table>
<thead>
<tr>
<th>Compounds</th>
<th>ν (CH)</th>
<th>ν (C=N)</th>
<th>ν (SO$_2$)</th>
<th>ν (SO$_3$)</th>
<th>ν (N=O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$L$_4$</td>
<td>3160</td>
<td>1620</td>
<td>3020 (free)</td>
<td>495</td>
<td>-</td>
</tr>
<tr>
<td>[Ni(HL)$_3$]</td>
<td>3160</td>
<td>1620</td>
<td>-</td>
<td>495</td>
<td>430</td>
</tr>
<tr>
<td>[Ni(HL)$_2$L]</td>
<td>3180</td>
<td>1630</td>
<td>3030 (free)</td>
<td>550</td>
<td>-</td>
</tr>
<tr>
<td>[Ni(HL)L]</td>
<td>3180</td>
<td>1630</td>
<td>-</td>
<td>550</td>
<td>430</td>
</tr>
<tr>
<td>H$_2$L$_5$</td>
<td>3200</td>
<td>1620</td>
<td>3420 (free)</td>
<td>560</td>
<td>-</td>
</tr>
<tr>
<td>[Ni(L)$_2$]</td>
<td>3200</td>
<td>1620</td>
<td>-</td>
<td>560</td>
<td>425</td>
</tr>
<tr>
<td>[Ni(L)$_3$]</td>
<td>3200</td>
<td>1620</td>
<td>-</td>
<td>495</td>
<td>430</td>
</tr>
</tbody>
</table>

Hb: Hydrogen bonding, * Absence of the bond

bands at ~1620, ~1430 and ~1270 cm$^{-1}$ are assigned to γ (C=N), γ (C-O) and γOH vibrations, respectively. The four bands at ~1325, ~1170, ~1570 and ~1480 cm$^{-1}$ are attributed to γSO$_2$, ν$_s$SO$_2$, ν$_s$SO$_3$, γSO$_2$ vibrations, respectively and remain more or less at the same positions as reported in literature (Bellamy, 1958). The observation of broad but weak bands in the 2000-1800 and 2400-2200 cm$^{-1}$ regions suggests the existence of hydrogen bonding of the type N-H...N (intermolecular hydrogen bonding). The IR spectra of both ligands in CHCl$_3$ show the obscurc of hydrogen bonding. The 1H-NMR spectra of H$_2$L$_3$ and H$_2$L$_4$ in d$_6$-DMSO show two singlet signals at 11.50 and 11.10 ppm, downfield of TMS, with equal ratio and assigned to the protons of OH and NH groups, respectively. Those two signals disappear upon deuteration. The IR spectra of H$_2$L$_3$ and H$_2$L$_4$ show three important bands. H$_2$L$_3$ exhibits bands at 3180, 3030 and 2880 cm$^{-1}$ while H$_2$L$_4$ show bands at 3200, 3460 and 3040 cm$^{-1}$. These bands can be assigned to γOH γOH and γNH vibrations, respectively. The position of the latter bands suggests that the OH group is strongly affected by strong intramolecular hydrogen bonding of the type O-H...N (Bullock and Tajmir-Riahi, 1978). In addition, the observation of broad weak bands in the 2000-1800 and 2400-2200 cm$^{-1}$ regions is also taken as evidence for the presence of hydrogen bonding. The 1H-NMR spectra of H$_2$L$_3$ and H$_2$L$_4$ in d$_6$-DMSO show three singlet signals at 2.4, 10.2 and 11.5 ppm, downfield of TMS, with ratio 3:1:1 and are assigned to the protons of CH$_2$, NH and OH groups, respectively. The latter two signals disappear upon deuteration. All these observations suggest the structures for the ligands given in Scheme 2.
Scheme 2: Presentation of the inter- and intramolecular hydrogen bonding

Scheme 3: Presentation of the two forms of the ligands

Fig. 1: Cyclic voltammogram of 1 mmol L\(^{-1}\) [Ni(HL\(_2\))\(_2\)] in DMSO-TEAP (0.1 mol L\(^{-1}\)) at GCE; scan rate 0.1 V sec\(^{-1}\) at 25°C. Inset shows the CV of H\(_2\)L\(_1\) (1 mmol L\(^{-1}\)) in the same solution.

voltammogram of 1 mmol L\(^{-1}\) [Ni(HL\(_2\))\(_2\)] which is similar to that of [Ni(HL\(_2\))]\(_2\), in DMSO with 0.1 mol L\(^{-1}\) N(Et\(_4\))ClO\(_4\), as the supporting electrolyte is shown in Fig. 1. The voltammogram obtained, in the anodic direction, at a glassy carbon electrode shows two prominent oxidation waves at E\(_{pa}\) values 0.58 V (peak 1) and 1.22 V (peak 2). It should be mentioned that the supporting electrolyte N(Et\(_4\))ClO\(_4\) in DMSO did not show any redox activity in the potential range studied. So the anodic process (peak 2) is a result of the redox process of the corresponding ligand (HL\(_2\)). This signal is also observed in the CV of H\(_2\)L\(_1\) under similar conditions and may be attributed to the irreversible oxidation of the NH group. The other peak (peak 1) observed in the CV plot is assumed to be a result of the oxidation occurring at the Ni(II) ion. This redox couple studied in the interval of 10-2000 mV sec\(^{-1}\) shows a linear variation of I\(_{pa}\) versus v\(^{1/2}\) at complex concentrations \(\approx 3\) mmol L\(^{-1}\). Moreover the slope \(\Delta E/\Delta \log v\) has the value of 0.046 V that is larger than those expected for reversible process. These suggests a diffusion controlled irreversible Ni(II)-Ni(III) process at complex concentrations \(\approx 3\) mmol L\(^{-1}\). The value of the symmetry coefficient \(\alpha\) was also determined using Eq. 1 (Nicholson and Shain, 1964) and was found to be 0.45 when \(n = 1\), which confirmed the irreversible nature of the electrode process Ni(II)-Ni(III).

\[
E_p - E_{1/2} = \frac{48 \text{ mV}}{\alpha n} \quad (T = 25^\circ\text{C})
\]

where, \(E_{1/2}\) is the half-peak potential, \(n\) is the total number of electrons involved in the reaction.

On the other hand, the Fig. 2 shows that at higher complex concentration and for \(v > 400\) mV sec\(^{-1}\) the increase of I\(_{pa}\) with \(v^{1/2}\) was less than linear. These results indicate that the complex oxidation occurs via an irreversible electron transfer followed by a chemical reaction at complex concentrations \(> 3\) mmol L\(^{-1}\).

We also carried out the RDE experiments for [Ni(HL\(_2\))]\(_2\) at different concentrations in DMSO solutions in order to elucidate the reaction mechanism. Figure 3 shows the results plotted according to Levich equation:

\[
I_i = 0.620nFAD^{1/2}v^{-1/2}\omega^{1/2}C_o
\]

where, \(D\), \(v\), \(\omega\) and \(C_o\) are the diffusion coefficient, the kinematic viscosity, the rotation speed and the bulk concentration of the reactant in the solution respectively and all other parameters have their conventional meanings.

Levich equation predicts that the plot of I\(_i\) vs. \(\omega^{1/2}\) should be linear. This was true only when the complex
concentration was ≤3 mmol L⁻¹ (Fig. 3), while for concentrations higher than 3 mmol L⁻¹ the corresponding plots were found to be of curved shape. This result is an indication of a kinetic limitation (Razmi-Narbin and Pournaghi-Azar, 2002).

The behavior of the oxidation peak currents (Iₚ₀) of [Ni(HL₄)]⁻ and the I vs. v¹/² equations is identical to that reported for CV and RDE studies of [Ni(HL₄)]⁻.

The cyclic voltammogram of [Ni(HL₄)]⁻ at a glassy carbon electrode with DMSO as the solvent (Fig. 4) is very similar to that of [Ni(HL₄)]⁻. The voltammogram obtained, in the anodic direction, displays three oxidative peaks (1, 3 and 2) at 25°C and at a sweep rate of 100 mV sec⁻¹. The two anodic processes (peak 3 and 2) together with the cathodic peaks (3 c and 3 c) are a result of the redox processes of H₂L₄ and H₂L₄ ligands. These signals are also observed in the CV of H₂L₄ and H₂L₄, under similar conditions. Not that the reverse scan at 1100 mV rises the appearance of peaks 3 c and 3 c indicating the association of these peaks and peak 3. The peaks 3 and 2 are tentatively attributed to the irreversible oxidation of the naphthyl group and NH group, respectively. The peak 1 may be assigned to the Ni(III)/Ni(II) redox couple.

On the other hand, we can note that on increasing the scan rate, for [Ni(HL₄)]⁻ and [Ni(HL₄)]⁻ at 2 mmol L⁻¹, from 100 to 2000 mV sec⁻¹ (Fig. 5), the oxidation-reduction waves become more reversible-like. Probably this change is due to increase of scan rate and diffusion problems occur (Perez et al., 2005). This may be also due to the fact that the electron transfer reaction is followed by a chemical reaction. Note that the [Ni(HL₄)]⁻ and [Ni(HL₄)]⁻ complexes do not show the same behavior over the range of studied voltage sweep rates.
The peak current I_p for oxidation peak 1 increased linearly with bulk solution concentration of [Ni(HL$_2$)$_2$] over the concentration range 0.5-2 mmol L$^{-1}$. At concentrations higher than 2 mmol L$^{-1}$ this increase was less than linear. Furthermore, it was shown that I_p increases linearly as a function of square root of the voltage sweep rate over the sweep rate range 100-2000 mV sec$^{-1}$ at complex concentrations ≤2 mmol L$^{-1}$. At higher concentrations, the current increases with increasing square root of the voltage sweep rate, but was found to be non-linear. Moreover, the RDE study shows that for complex concentrations ≤2 mmol L$^{-1}$, the limiting current increases linearly with increasing electrode rotation speed. At higher complex concentrations, this increase was found to be of curved shape. These behaviors indicate that the peak 1 oxidation of [Ni(HL$_2$)$_2$] is a diffusion controlled reaction over the entire range of voltage sweep rate studied at complex concentrations ≤2 mmol L$^{-1}$. At higher complex concentrations (>2 mmol L$^{-1}$), the current is governed by the rate of the charge transfer or of a chemical reaction. Moreover, it is possible to suggest that the formation of Ni(III) complexes undergoes an electron transfer followed by relatively fast chemical reaction, which probably results in the partial dissociation of the complexes.

On the other hand, a controlled-potential preparative electrolysis was carried out in a divided cell. An exhaustive oxidation of [Ni(HL$_2$)$_2$] was performed at constant potential (500 mV). The anolyte was 20 mL of 0.5 mmol L$^{-1}$ [Ni(HL$_2$)$_2$] solution. A Pt electrode was used as the cathode. The result indicates that approximately 1 electron was transferred per molecule (n = 1.2). Since the peak currents I_{p} for all the complexes studied have approximately the same value, the number of electron involved in the oxidation of Ni(II) is 1 (for all the complexes). After exhaustive oxidation of [Ni(HL$_2$)$_2$], the resulting solution was scanned from 0 to 1400 mV, the oxidized complex did not exhibit any oxidation signal Ni(II) → Ni(III) as shown in Fig. 6.

The electrochemical data of 2 mM nickel complexes studied are summarized in Table 3. A change in the formal potentials of the nickel(III)/nickel(II) couples, which occurs upon ligand substitution along this series is observed. A comparison of the redox potentials of the [Ni(HL$_2$)$_2$] and [Ni(HL)$_2$] complexes where both ligands HL and H$_2$L have the same set of donor atoms but differ in the size of central chelating agents shows that the nickel(III) complex [Ni(HL)$_2$] is more stable thermodynamically; i.e., the Ni(III)/Ni(II) potential is lowered by 140 mV. The same result was obtained by comparing the redox potentials of [Ni(HL)$_2$] and [Ni(HL)$_2$]. The Ni(III)/Ni(II) potential is, here, lowered by 150 mV. The lower oxidation potentials of [Ni(HL)$_2$] and [Ni(HL)$_2$] could be a result of the ability of naphthyl group to stabilize this oxidation state to a greater extent than phenyl group (Table 3). In fact, the substitution of the phenyl by naphthyl fragment causes an increase in aromatic character. This increase in aromatic character is enough to produce the observed negative shift in the formal potential. The electron density at the metal center is also enhanced as the aromatic character rises, thus facilitating its oxidation. In other respects, comparing the redox potentials of [Ni(HL)$_2$] and [Ni(HL)$_2$] on the one hand and those of [Ni(HL)$_2$] and [Ni(HL)$_2$] on the other hand shows a small negative shift of the Ni(III)/Ni(II) potential, indicating a weak effect of the CH$_2$ group.

CONCLUSION

In this study, we could synthesize Ni(II) hydrazone derivatives complexes containing nitrogen and oxygen donor atoms. The structure determinations of ligands and their complexes were established by elemental analysis, magnetic moments and UV, IR and 1H-NMR spectra. In all complexes, the geometry around the nickel(II) ions is square planar. It was suggested that the ligands exist in two forms (free and hydrogen-bonded). Electrochemistry data show that the Ni(II) complexes displayed Ni(III)/Ni(II) couples irreversible waves and that the substitution of the phenyl by naphthyl fragments causes a large enough increase in aromatic character to produce a negative shift in the formal potential.
REFERENCES

