A Cash Flow Oriented EOQ Model with Deteriorating Items Under Permissible Delay in Payments

Kuo-Lung Hou and Li-Chiao Lin
1Department of Business Administration, Graduate School of Management, The Overseas Chinese Institute of Technology, Taichung, Taiwan, Republic of China
2Department of Business Administration, National Chinyi University of Technology, Taichung County, Taiwan, Republic of China

Abstract: This study develops an inventory model to determine an optimal ordering policy for deteriorating items with delayed payments permitted by the supplier under inflation and time discounting. This study applies the discounted cash flows approach for problem analysis. Mathematical models have been derived for obtaining the optimal cycle time and optimal payment time for item so that the annual total relevant cost is minimized. The present value of the annual total relevant cost in this inventory system is developed first, then an optimal number of replenishment, cycle time and order quantity are obtained by a solution procedure. Finally, a numerical example is given to illustrate the results.

Key words: Inventory, deterioration, delay in payments, cash flow, inflation

INTRODUCTION

The traditional EOQ model assumes that retailer must pay for the items as soon as the items are received. However, in real-life situations, the supplier may offer the retailer a delay period, that is trade credit period, in paying for the amount of purchasing cost. The retailer can sell the goods to accumulate revenue and earn interest before the end of trade credit period. But if the payment is delayed beyond that period, a higher interest will be charged. Such a convenience is likely to motivate customer to order more quantities because paying later indirectly reduces the purchase cost. Therefore, trade credit is an important source of financing for intermediate purchasers of goods and services and plays a large role in our economy. Recently, Hou and Lin (2008) considered an ordering policy with a cost minimization procedure for deterioration items under trade credit and time discounting. Other many related articles can be found by Goyal (1985), Aggarwal and Jaggi (1995), Jamal et al. (1997), Sarker et al. (2000), Chung et al. (2005), Chung and Liao (2006), Ouyang et al. (2006) and Huang (2007). On the other hand, many researchers have studied inventory models for deteriorating items such as volatile liquids, blood banks, medicines, electronic components and fashion goods. The analysis of deteriorating inventory problems began with Ghare and Schrader (1963), who developed a simple Economic Order Quantity (EOQ) model with a constant rate of deterioration. Since then, many related articles could be found by Heng et al. (1991), Sarker et al. (1997) and Balkhi and Benkherouf (2004). While determining the optimal ordering policy, the effects of inflation and time value of money cannot be ignored. The pioneer research in this direction was Duzacott (1975), who developed an EOQ model with inflation subject to different types of pricing policies. Other related articles can be found in Misra (1977) and Ray and Chaudhuri (1997), Liao et al. (2000) and Chung and Lin (2001).

This study develops a deterministic inventory model when a delay in payments is permissible. The effects of the inflation, deterioration and delay in payments are discussed. Moreover, an algorithm is developed to obtain the optimal number of replenishment, cycle time and order quantity.

NOTATION AND MODEL

The following notation is used throughout the study:

- **H**: Length of planning horizon
- **T**: Replenishment cycle time
- **n**: No. of replenishment during the planning horizon; \(n = \frac{H}{T} \)
- **Q**: Order quantity, units/cycle
- **D**: Demand rate per unit time, units/unit time
- **A**: Ordering cost at time zero, $/order

Corresponding Author: Kuo-Lung Hou, 100, Chiao Kwang Rd. Taichung 407, Taiwan, Republic of China
Tel: +886 4 27016855/7525 Fax: +886 4 24527583

1791
\[C_r = \frac{hD}{\theta} \left(\frac{e^{\theta t/n} - e^{-\theta t/n}}{\theta + R} \right) + \frac{C_d}{R} \left(1 - e^{-\theta t/n} \right) \left(1 - e^{-R t/n} \right) \]

Case I: \(M \leq T = \frac{H}{n} \)

In this case, the present value of the interest payable during the first replenishment cycle is:

\[I_a = c_i \int_0^T t e^{-\delta t} dt = \frac{c_i D}{\theta (\theta + R)} \left[e^{-\theta t/n} - e^{-R t/n} \right] + \frac{c_i D}{R} \left(e^{-R t/n} - e^{-\delta t} \right) \]

hence, the present value of the total interest payable over the time horizon \(H \) is:

\[I_a^H = \sum_{j=0}^{n-1} I_a e^{-\delta t} = \left[\frac{c_i D}{\theta (\theta + R)} \left[e^{-\theta (n-1)/n} - e^{-R (n-1)/n} \right] + \frac{c_i D}{R} \left(e^{-R (n-1)/n} - e^{-\delta (n-1)/n} \right) \right] \left(1 - e^{-\delta H/n} \right) \]

Next, the present value of the interest earned during the first replenishment cycle is:

\[I_d = c_l \int_0^T t e^{-\delta t} dt = \frac{c_l D}{R} \left[\frac{1}{R} \left(1 - e^{-R t/n} \right) - \frac{H}{n} e^{-R t/n} \right] \]

hence, the present value of the total interest earned over the time horizon \(H \) is:

\[I_d^H = \sum_{j=0}^{n-1} I_d e^{-\delta t} = \left[\frac{c_l D}{R} \left[\frac{1}{R} \left(1 - e^{-R (n-1)/n} \right) - \frac{H}{n} e^{-R (n-1)/n} \right] \right] \left(1 - e^{-\delta H/n} \right) \]

Therefore, the total present value of the costs over the time horizon \(H \) is:

\[TVC_c (n, H) = C_r + C_d + I_d^H - I_a^H \]

Case II: \(M > T = \frac{H}{n} \)

The interest earned in the first cycle is the interest earned during the time period \((0, T)\) plus the interest earned from the cash invested during the time period \((T, M)\) after the inventory is exhausted at time \(T \) and it is given by:

\[I_{a_2} = c_i \left[\int_0^T t e^{-\delta t} dt + (M - T) e^{-\delta t} \right] \int_0^T t e^{-\delta t} dt \]

hence, the present value of the total interest earned over the time horizon \(H \) is:
\[l_{ij}^n = \sum_{j=1}^{n} l_{ij} e^{-\beta j} \]
\[= \left(\frac{c_i D}{R} \right) (1 - e^{-\beta n}) - \frac{c_i D H}{R} e^{-\beta n} \]
\[+ \left[\frac{MH}{D} - (H/n)^3 \right] \frac{c_i D e^{-\beta n}}{1 - e^{-\beta n}} \]

(13)

Since, the replenishment cost, purchasing cost and inventory holding cost over the time horizon \(T \) are the same as Case I, the total present value of the costs, \(TVC_d(s, n) \), is given by:

\[TVC_d(s, n) = C_c + C_r + C_h - l_n^d \]

(14)

At \(M - T = H/n \), we find \(TVC_d(n) = TVC_d(n) \). Consequently, we have:

\[TVC(n) = \begin{cases}
TVC(n) & \text{if } T = H/n \geq M \\
TVC_d(n) & \text{if } T = H/n \leq M
\end{cases} \]

where, \(TVC(n) \) and \(TVC_d(n) \) as expressed in Eq. 11 and 14, respectively.

ALGORITHM

The following algorithm is developed to derive the optimal \(n, T, Q \) and \(TVC(n) \) values:

Step 1: Start by choosing a discrete variable \(n \), where \(n \) is any integer number equal or greater than 1.

Step 2: If \(T = H/n \geq M \) for different integer \(n \) values, derive \(TVC(n) \) from (11). If \(T = H/n \leq M \) for different integer \(n \) values, derive \(TVC_d(n) \) from Eq. 14.

Step 3: Repeat Step 1 and 2 for all possible \(n \) values with \(T = H/n \geq M \) until the minimum \(TVC(n) \) is found from Eq. 11 and let \(n^*_1 = n \). For all possible \(n \) values with \(T = H/n \leq M \) until the minimum \(TVC_d(n) \) is found from Eq. 14 and let \(n^*_2 = n \). The \(n^*, n^*_1, TVC(n^*_1) \) and \(TVC_d(n^*_2) \) values constitute the optimal solution and the satisfy the following conditions:

\[\Delta TVC(n^*_1 - 1) < 0 < \Delta TVC(n^*_2) \]

(15)

\[\Delta TVC(n^*_1 - 1) < 0 < \Delta TVC(n^*_2) \]

(16)

Where:

\[\Delta TVC(n^*_1) = TVC(n^*_1 - 1) - TVC(n^*_1) \]

and

\[\Delta TVC(n^*_2) = TVC(n^*_2) - TVC(n^*_2 - 1) \]

Step 4: Select the optimal number of replenishment \(n^* \) such that:

\[TVC(n^*) = \begin{cases}
TVC(n^*_1) & \text{if } H/n^*_1 \geq M \\
TVC(n^*_2) & \text{if } H/n^*_2 \leq M
\end{cases} \]

Hence, optimal order quantity \(Q^* \) is obtained by substituting \(n^* \) into (3) and optimal cycle time, \(T^* \), is \(T^* = H/n^* \).

NUMERICAL RESULTS

An example is devised here to illustrate the results of the general model developed in this study with the following data.

The demand rate, \(D = 600 \) unit/year, the replenishment cost, \(A = $80 \)/order, the holding cost excluding interest charges, \(h = $2.4/\text{unit/year} \), the per unit item cost, \(c = $15/\text{unit} \), the constant rate of deterioration, \(\theta = 0.15 \), the net discount rate of inflation, \(R = $0.12/\$\) year, the interest charged per \$ in stocks per year by the supplier, \(I_1 = $0.18/\$\) year, the interest earned per \$ per year, \(I_2 = $0.16/\$\) year and the planning horizon, \(H \), is 5 years. The permissible delay in settling account, \(M = 60 \) days = 60/360 years (assume 360 days per year) Using the solution procedure, we have the computational results shown in Table 1. We find the Case I is optimal option in credit policy. From the case, the minimum total present value of costs is found when the number of replenishments, \(n \), is 23. With 23 replenishments, the optimal cycle time \(T \) is 0.217 year, the optimal order quantity, \(Q = 132.59 \) units and the optimal total present value of costs, \(TVC = $36296.70 \).

<table>
<thead>
<tr>
<th>Case</th>
<th>Order No. (n)</th>
<th>Cycle time (T) (year)</th>
<th>Order quantity (Q) (units)</th>
<th>Total costs (TVC) ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>22</td>
<td>0.227</td>
<td>138.72</td>
<td>36297.33</td>
</tr>
<tr>
<td></td>
<td>23*</td>
<td>0.217</td>
<td>132.59</td>
<td>36296.70*</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.208</td>
<td>126.97</td>
<td>36302.66</td>
</tr>
<tr>
<td>II</td>
<td>30</td>
<td>0.167</td>
<td>101.26</td>
<td>36439.13</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.161</td>
<td>97.95</td>
<td>36444.90</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.156</td>
<td>94.86</td>
<td>36454.07</td>
</tr>
</tbody>
</table>

*Optimal solution
CONCLUSION

This study develops a deterministic inventory model for deteriorating items over a finite planning horizon when the supplier provides a permissible delay in payments. The model considers the effects of deterioration, inflation and permissible delay in payments. Based on the DCF approach we permit a proper recognition of the financial implication of the opportunity cost in inventory analysis. In addition, we have presented an optimal solution procedure to find the optimal number of replenishment, cycle time and order quantity to minimize the total present value of costs. Finally, a numerical example is given to illustrate the results. Further research can be done for case with stochastic market demand when the supplier provides a permissible delay in payments and cash discount.

ACKNOWLEDGMENT

This research was partially supported by the National Science Research Council of Taiwan under Grant NSC 96-2416-H-240-002-MY2.

REFERENCES
