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Abstract: Measurement of biological variables in a process is a key to efficient control and supervision of the
bioprocess. In a process of protein production such as erythropoietin (EPO), it is crucial but difficult to measure
EPO concentration using direct or on-line measurements. EPO concentration is usually measured through
laboratory analysis where expensive costs of test kit, tedious and long time analysis are the biggest obstacles.
Artificial neural network software sensor was developed to estimate EPO concentration based on other
measured variables such as biomass, substrate or by-product in EPO production. Radial Basis Function was
utilized to map nonlinear mapping between the input and output parameters. This study deals with effect of
mput numbers and spread constant on radial basis performance. It 15 found that different number of mputs and
spread constant significantly affect the performance of the predictive model. The high values of coefficient of
determination, R from regression analysis also proved that this model successfully mapping the nonlinear
relationship between the input and output variables
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INTRODUCTION

Erythropoietin or known as EPO 1s a hormone
produced by specialized renal cells or by regenerating
human hepatic cells in our body (Eckardt, 1996). These
cells release EPQ when the oxygen level is low in the
kidney. EPO then stimulates the bone marrow to produce
more red cells and thereby mcrease the oxygen-carrying
capacity of the blood.

Normal levels of EPO are in the range 0 to
19mU mL ™" (miliunits per milliliter). Lower than normal
levels of EPO are found m chronic renal failure whle
elevated levels of EPO can be seen in polycythemia, a
disorder in which there 1s an excess of red blood cells.
Nowadays, synthetic EPO has been produced through
recombinant DNA technology in mammalian cell
culture. Recombinant EPO is secreted from genetically
engineered mammalian cells in a fermentation process
then recovered and purified as EPO bulk in a purification
process to achieve the desired product characteristics
specified by the manufacturer. Besides of the very
complicated manufacturing process, the final step in

EPO production also hampered due to the difficulty to
measure the product itself.

The ability to provide faster and easier measurement
of fermentation variables 1s important for momtoring and
minimizing product quality variability. However, EPO
concentration is usually measured offline through
laboratory analysis where expensive costs of ELISA test
kat, tedious and long time analysis via chromatography
column are the biggest obstacles. Accurate prediction of
EPO concentration can make it easy to formulate the EPO
bulk into dosage form.

Since 1980s, Artificial Neural Network (ANN) based
software sensor started to gain trust as a predicting tool
where desired output can be predicted based on
information of mput from readily available on-line
measurement (Golobic ef al., 2000; Bernard et al., 2000,
Cheruy, 1997). In the case of no available sensor, a
software sensor may be designed using sampling
It is a modeling
difficult-to-measure variables
(Jianxu and Huihe,

and off-line
approach to
from easy-to-measure variables
2002).

laboratory  analysis.
estimate
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Radial Basis Function (RBF) network is one type of
ANN which is a popular alternative to Multi Layer
Perceptton (MLP) m modeling,
optimization in bioprocesses. RBF captured interest
because of their attractive properties such as localization,
interpolation, cluster modeling and quasi-orthogonally.

There have been many successful applications of
RBF network as a predicting tool. Moghadas and Choong
(2008) study on prediction of double layer grids’ maximum
deflection using neural network resulted that RBF is better
than backpropagation in term of training tume and
approximation errors. RBF network was proposed as soft
sensor for automatic gantry crane system where the
developed RBF model has estimated the unmeasured state
well and was robust to parameter variations (Solihin et al.,
2006). The objective of this study 1s to develop a software
sensor based on artificial neural network (ANN) for
prediction of EPO production variables. This data-driven
modeling approach 1s employed to predict EPO
concentration based on other measured variables such as
biomass, substrate (glucose and L-glutamine) or by
product (ammonia).

Thus, RBF network 1s selected for this study because
1t has major advantages over MLP due to its ability to be
trained using established linear regression techniques,
allowing fast convergence to the solitary global minimum
for a given set of fixed hidden nodes parameters
(Dacosta et al., 1997). Besides, RBF 1s may be used with
advantage for modeling of a system with limited number
of experimental data is available (Lanouetta et al., 1999).

The developed RBF model 15 of a great importance
due to its ability to predict variables under varying
conditions. This study discussed the effect of spread
constant and mputs numbers on RBF predictive
performance in predicting EPO concentration.

controlling  and

MATERIALS AND METHODS

Model development

Structure and principle of RBF network: Radial basis
function networlk consist of three layers which is an input
layer, a single layer of processing perceptron and an
output layer. The single layer of processing perceptron
has an activation function called basis function. The most
commonly used basis function is Gaussian basis function.
Structure of RBF network in its most basic form is shown
mFig 1.

The mput layer is made up of source nodes whose
mumber is equal to the dimension of the input vector u.
The second layer is the hidden layer which is composed
of nonlinear umits that are commected directly to all of the
nodes 1n the input layer. x is the desired output.

-]

(=]

Hidden layer

Input layer Output layer

Fig. 1: Architecture of RBF network

Each hidden unit takes its input from all the nodes at
the components at the input layer. The hidden units
contain a basis function, which has the parameters center
and width or spread. @ is a basis function and n 15 no of
cluster centers. The basis function is typically a Gaussian
function, the spread o corresponding to the variance
which has a peak at zero distance and it decreases as the
distance from the center mcreases.

In this work, Radial Basis Function Network model
was developed using MATLAB 7.2, newal network
toolbox. A feed forward radial basis function network with
single hidden layer of nodes with Gaussian density
function was chosen. MATLAB uses the Orthogonal
Least Squares (OLS) algorithm to solve for the RBF
centers and weights for the comnections between the
nodes n the hidden and output layers (Chen ef al., 1991).
Other than specifying an error goal, the spread constant,
0, which determines the width of the receptive fields must
also be specified respective to RBFN model development.

Data pre-processing: Data collection is obtained from
Inno Biologics Sdn Bhd. All inputs and output data were
preprocessed and normalized between zero and one using
Eq. 1 to ensure each mput variables provides an equal
contribution in the network. This normalization method
has been widely used in various studies (Vanek et af.,
2004; Choi and Park, 2001):

x =T Fmn 1)

where x,,,,, 18 the normalized value of variable x, x,__, and
X4, are variable maximum and mimmum values,
respectively.

RBF training and testing: There were four input and one
output variables used m tlus work. The four nput
variables are biomass, glucose, L-glutamine and ammonia
concentration, while the desired output for this model 1s
erythropoietin concentration (Fig. 2).
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Fig. 2: Architecture of RBF network for predicting EPO
concentration

Four models (A, B, C and D) with different number of
mnput were presented in this study. Model A has one
input (biomass), model B has two input variables (biomass
and glucose), model C consists of three mput variables
(biomass, glucose and L-glutamine) and model D with four
input variables (biomass, glucose, L-glutamine and
ammonia).

Besides, the spread constant, 0 was varied until the
model obtained mimimum error index. This step was
conducted to investigate the effect of spread constant on
RBF predictive performance. In this study, the predictive
RBF model was designed using newrbe function. This
fumetion can produce a network with zero error on traiming
vectors. The function newrbe takes matrices of input
vectors P and target vectors T and a spread constant
SPREAD for the radial basis layer and returns a network
with weights and biases such that the outputs are exactly
T when the inputs are P. Type of learning algorithm used
in this newrb function is Orthogonal Least Square.

Model performance as expressed through Error index
(EI): In the subsequent analysis, the RBF network
performance 1s expressed throughout m term of error
index, EI Eq. 2, because it provides a measure of suitable
fitness of the model to the data (Rashid ef al., 2006):

- fZ(y -y )
Zy

v represents the experimental (real) value of output while
¥ is the predicted value.

Regression analysis between the network response
and the corresponding target was performed to examine
the network response in more details. Coefficient of
determination, R was used as an indicator in this analysis.

RESULTS

Error Index (ET) and coefficient determination value
(R) of traming and testing set for each model were

907b)  R=059006

0 10 20 30 40 50 60 70 8 90

i)  R=099301

0 10 20 30 40 350 60 70 80 90

0 10 20 30 40 S0 60 70 B 90
Target-actual EPO conc. (um mL™), TO

Fig. 3: (a, b): Regression analysis between predicted
output and actual target for 1 input (model A) and
2 mput (model B), respectively. (¢, d) Regression
analysis between predicted output and actual
target for 3 mput (model C) and 4 mput (model D),
respectively

collected during the simulation process and shown in
Table 1 and 2. As shown, in Table 1 and 2, a network with
spread constant, 0 = 4 found to be an optimum RBF
network because 1t fits for every model in term of EI
percentage and R value.

A regression analysis of predicted output and actual
target was performed to investigate the model precisely.
Figure 3a-d illustrates the strong correlation between
predicted value by the RBF model using the optimum
spread constant and the actual value resulted from
experimental data. The coefficient of determination, R for
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Table 1: Frror index and coefficient determination for different input numbers at selected spread constant, g (Training set)

Selected o % EI (A) R(A) % El (B) R(B) % HI (C) R(C) % Hl (D) R(D)
0.2 4.3 0.9657 7.95 0.8135 774 0.8242 10.11 0.6729
0.6 312 0.9736 322 0.9718 3.14 0.9732 3.13 0.9734
4 4.29 0.9495 1.92 0.9901 1.61 0.993 1.8 0.9913
10 4.32 0.9486 1.91 0.9902 1.59 0.9932 1.78 0.9915
22 4.33 0.9485 1.91 0.9902 1.6 0.9931 1.78 0.9915
Table 2: Error index and coefficient determination for different input numbers at selected spread constant, o (Testing set)
Selected o % EI (A) R(A) %EI (B) R(B) %EI (C) R(C) %EI (D) R(D)
0.2 0.59 0.9663 15.01 0.9385 2233 0.7545 14.12 0.7566
0.6 2.01 0.9766 0.11 0.9125 11.32 0.883 11.8 0.8649
4 3.02 0.9674 7.57 0.8207 1.7 0.7977 0.28 0.7356
10 3.03 0.967 7.63 0.82 1.4 0.7948 1.38 0.7121
22 3.04 0.9669 7.64 0.8199 0.89 0.7753 1.56 0.7081
. - O 1 input
12.00 = a 2 input
_ 10.004 - B 3 input
B 4 input
£ g0+ i
_‘3 6.00- iy w e F b 3
R ] .
g 4,00 o s e — 8 3 o ® Fow
2,004
0.00 L} L] L] T T
0.2 0.6 4 10 22
Spread constant

Fig. 4: Brror index for different number of mput at selected spread constant (traming set)

Py
24+ & o 1 input
_ o 2 input |

- 207 =) - o 3 input ]
£ 164 a= = 4 input
5 8 & b

4 F o0 ] A Jrd

0 T T T T 1

02 0.6 4 10 22
Spread constant

Fig. 5: Error index for different number of mput at selected spread constant (testing set)

model A, B, C and D were 0.94946, 0.99006, 0.99301 and
0.99128 accordingly, which means that the model was
successfully mapping the relationship between input and
output variables.

DISCUSSION

Effect of spread constant, 0: Model A, B, C and D were
trained with several spread constants (0.2, 0.6, 4, 10 and
22). As a result, it 1s found that smaller o does not
necessarily generate smaller EI and bigger o also does not
essentially resulted m higher error index. Figure 4
indicates that spread constant, 0 = 0.2 produces higher

error index for every model compare to spread constant of
0.6,4,100r 22,

In Fig. 5, although 0 = 0.2 generates very small error
for model A (E = 0.59%), but the other models resulted in
very high EI (15.01, 22.33 and 14.12%). By setting the
spread constant of testing set to 0.6, the lowest EI (0.11%)
was obtained. However, only one and two input variable
can generate small EI, while the bigger input variables
gain slightly high number of EI. Thus, 0.2 and 0.6 are not
fit to be selected as an optimum spread constant for this
predictive model.

In thus case, the spread constant of 0.2 and 0.6 may
not large enough for the receptive fields to overlap one
another to amply cover the whole input range.
Nevertheless, 1t should not be too large that there 13 no
distinction between the outputs of different nodes 1n the
same area of the input space.
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Effect of input number: As shown in Fig. 5, there was a
case where the selected 0 (0 = 4) gives very small EI
(0.28%) at certain model (Model D testing set). However,
when ¢ equal to 4 1s applied to model A, B and C, high
value of ET (1 to 7.57%) was obtained. This result shows
that number of inputs affect the RBF predictive
performance. At constant o, small inputs number may
gives high value of error ndex, which implies that error
index value is proportional to the number of input
variables used in the model.

CONCLUSION

In this study, RBF-based predictive model was
proposed to predict EPO concentration based on
measured variables such as biomass, glucose, L-glutamine
and ammonia concentration. The best predictive model
that successfully produced small error shows that newrb
function that applied Orthogonal Least Square (OLS)
traiming algorithm worked very well upon the centers and
weights for the connections between the nodes in the
hidden and output layers. Spread constant and number of
mputs indeed affect the predictive performance where the
optimum spread constant for this model 15 4 and the best
input number is three variables (biomass, glucose and
L-glutamine concentration). Strong correlation between
the input and output variables was indicated by high
value of coefficient of determination, R where it proved
that the model successfully mapping the nonlinear
relationship between the input and output variables.
Thus, offers a fast and rehable prediction of EPO
concentration.
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