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Abstract: In this study, we applied a new algorithm based on Homotopy Perturbation Method (HPM) to
evaluate the temperature distribution of a straight rectangular fin with temperature dependent surface heat flux

for all possible types of heat transfer. The local heat transfer coefficient 1s considered to vary with a power-law

function of temperature. The time interval 18 divided into several subintervals and the HPM solutions are

applied successively over these reduced time mtervals. Comparisons between the 13-term Adomian
decomposition solution and 6-term modified HPM solution are made. Comparison of the results obtained by
modified HPM with that obtained by the Adomian Decomposition Method (ADM) reveals that the obtained
modified HPM solution is quite accurate when only the six terms are used in the series expansion.
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INTRODUCTION

Fing are extensively used to enhance the heat transfer
between a solid surface and its convective, radiative, or
convective radiative surface (Kermn and Kraus, 1972).
Fimned surfaces are widely used, for mstance, for cooling
electric transformers, the cylinders of air-craft engines,
and other heat transfer equipment. Finned surfaces are
widely used, for instance, for cooling electric
transformers, the cylinders of air-craft engines, and other
heat transfer equipment. The temperature distribution of
a straight rectangular fin with a power-law temperature
dependent surface heat flux can be determined by the
solutions of a one-dimensional steady state heat
conduction equation which, in dimensionless form, is
given by Chang (2005):

%_Nzeml 0 (1)

subject to the boundary conditions:

%(0) =0, 6()=1 (2

where, the axial distance x is measured from the fin tip, ©
15 the temperature, and N 1s the convective-conductive
parameter of the fin. The values of n vary in a wide range
between 4 and 5 depending on the mode of beiling
(Liaw and Yeh, 1994ab). For example, the exponent nmay
take the respective values -4, -0.25, 0, 2 and 3, depending
on whether the fin is subject to transition boiling, laminar

film boiling or condensation, convection, nucleate boiling,
and radiation into free space at zero absolute temperature.

The approximate analytical solution to 1-2 was
presented by Chang (2005) using the analytic Adomian
Decomposition Method (ADM). Sometimes it is a very
intricate problem to calculate the so-called Adomian
polynomials involved in ADM. Another analytic method
which has been shown to be much simpler than the ADM
is called the Homotopy-perturbation Method (HPM), first
developed by He (1998, 1999, 2000, 2003, 2004, 2006a,b).
We note that based on  HPM,
Ghorbam and Saberi-Nadjafi (2007) and Ghorbam (2009)
were able to overcome the difficulty in ADM through the
so-called He polynomials. HPM yields rapidly convergent
series solutions (He, 2006a; El-Latif, 2005;
Noor and Mohyud-Din, 2007). Recently, the applicability
of HPM was extended to singular second-order
differential equations (Chowdhury and Hashim, 2007a,b),
nonlinear population dynamics models
{Chowdhury and Hashim,  2007¢), general
time-independent Emden-Fowler equations
{(Chowdhury and Hashim, 2009), time-dependent
Emden-Fowler type equations (Chowdhury and Hashim,
2007b), Klemn-Gordon and sine-Gordon equations
(Chowdhury  and Hashim, 2009). Very recently,
Chowdhury et al (2008) and Hashin and Chowdhury
(2008) were the first to successfully apply the Multistage
Homotopy-perturbation Method (MHPM) to the chaotic
Lorenz system and a class of system of ODEs.

In this study, we present a proper procedure based
on HPM for solving analytically problem 1-2. Tn doing so,
we corrected the work of Ganji (2006).
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MODIFIEDHOMOTOPY-PERTURBATIONMETHOD

Since the HPM 18 now standard and for brevity, the
reader is referred to He (1998, 1999, 2000, 2003, 2004,
2006a,b) for basic ideas of HPM. To illustrate the basic
ideas of the Modified Homotopy-perturbation Method
(MHPM), we consider the following general nonlinear
differential equation (He, 2006a, b):

Ay)-f(r) =0, red (3)
with boundary conditions:
B(y,dy/on)=0 rel’ 4)

where, A 1s general differential operator, B 1s a boundary
operator, f(r) is a known analytic function, and I" is the
boundary of the domain Q.

The operator A generally divided into two parts T,
and N, where L 1s linear while N 1s nonlinear. Therefore,
Eq. 4 can be written as follows:

L{y) + Niy)-f(r)=0 (3

We construct a homotopy y(r,p): 2 = [0, 1]- % of Eq. 3
which satisfies:

H(Y.P) = (1-p)[LCY ALY ) HplA(y)-fr)] = 0
pe[0,1], re€d (6)

which is equivalent to:

H(y.p) = L{y)-L(ya) + pL(Yy) + p[N(y)-fir)] = 0 (7

where pe[0,1] 15 an embedding parameter and Y, 1s an
mitial approximation which satisfies boundary conditions.
Tt follows from Eq. 6 and 7 that:

H(y,0) = L(y)-L(yo) = O and Hiy,1) = A(y)-f{r) = 0(8)

Thus, the changing process of p from 0 to 1 is just
that of v(r,p) from y,(t) to yv{p). In topology this called
deformation and T(y)-L(0) and A(y)-f(r) are called
homotopic. Here the embedding parameter 13 introduced
much more naturally, unaffected by artificial factors;
further it can be considered as a small for O<p<l. Soitis
very natural to assume that the solution of Eq. 7 and 8
can be expressed as:

YO = (%) + 10,30 w0+ ©))

According to HPM, the approximate solution of
Eq. 7 can be expressed as a series of the power of p, i.e.,

y=limy=u,+u,+u,+u,--- (10)

p—=l

Now, we apply the above procedure as an algorithm
for approximation the dynamics response in a sequence of
time 1intervals (time step) [0,1),[0,t,),[0,t,),...[t_; t.) such
that the initial condition in [t,t. ] is taken to be the
condition at t, For practical computations, a finite number
of terms m the series:

60=58, (an
k=0

are used 1n a time step procedure just outlined.

Application of modified HPM: Here, we apply an
alternative approach of HPM to find approximate
analytical solution to 1-2. To do so, we first construct a
homotopy yir,p):Q2 x [0,1]- R which satisfies:

2 2 2
ﬂid% +P[d Ya NEBMIJO (]2)

& d dx’
Suppose the solution of Eq. 1 has the form:
8(x) = upu, (x) + prux+ ... (13)
and let us choose the mitial approximation as:
u(x) = yi(x) =6(0) =c, (14)
where ¢ 1s to be determined.
Substituting 13 into 12 and equating the terms with

identical powers of p, we get the following system of
linear differential equations:

2 2
d'n " d’y, — Ny, =0,

det &
duy
1,(0)=0, E(O):O’
2
(quf -N'(n+Duu,” =0,
il
L0)=0, =200,
2
((11;3 -N'{n+Duu,” - %Nzn(n +Im, e, =0,
d
LO=0.Z20)=0,
d'u,

4_

o~ N Duu” -y,

+ én(n —m*u,"7]=0,

a,

1,(0)=0,
,(0) »

©)=0
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Solving the above equations, we have:

W, (x) :lCnHNEXE i
2
1
u,(x)= 7 A+ N,
n,(x)= 7—;'003"“ (m+1)En+DN°E,

u,(x)= Hlmc““+1 (n+1)(34n* + 30+ DHNAE,

1
3628800
+69n + NV x"

,(x)= M n +1)496m° — 66n°

etc.
According to Eq. 13 and the assumption p = 1, the
six-term approximate solution to (1) is:

0= lc"“Nzx2 + ch"” (n +DHN*x* +Lc3’”1 (n +1){4n +HN%° +
2 24 720

1
40320
1
3628800

= n +13(34n° + 50 + DNX® +

c™(n +1)4%6n° - 66n” +69n + HN"x"
(15)

The complete solution 18 obtamed once the constant
¢ 18 determined by imposing the second boundary
condition given by Eq. 2. Note that the value of ¢ must lie
in the interval (0,1) to represent the temperature at the fin
tip (Chang, 2005).

To carry out the iterations in every subinterval of
equal length At [0,t,), [O,t,), [0,t5)...[t,_,, 1), we would need
toknow the values of the following initial conditions,
¢ =8t

In general, we do not have these information at our
clearance except at the initial point t' = t, = 0 but we can
obtain these values following the MHPM. We note that
the 6-term  approximations of ©  denoted as
¢, (x)= 2; y,, - For practical computations, a finite number

of terms in the series solution are used in a time step
procedure just outlined.

RESULTS AND DISCUSSION

Now we consider the nonlinear Eq. 1. Taking the
actual physiological data in Chang (2005) the 13-term
ADM approximate solution for N =1, n=51is:

¢, =0.81620 + 0.14780x" + 0.02675x*
+0.00678x% + 0.00183x% +0.00051x""
1+0.000145% +0.00004x +0.00001%" (16)
+0.000004x +0.000001x™
+0.0000003x™ + 0.0000001x*

Incorporating the recursive algorithm 12-15, the
6-term approximate MHPM solution for N=1,n=51is

d, =0.81623+0.14785x" +0.02678x" + 0.00679x" 17)
+0.00183x° +0.00051x"

similar expression have been obtained for other values of:
—4<n<5

The MHPM algorithm is coded in computer algebra
package Maple and the Maple environment variable
Digits is set to 16 in all calculation done for the current
problem. Obviously the accuracy of our present 6-term
MHPM solution is verified by the 13-term ADM solution.
First we note that the special case N* = g and n = 3
reduces problem 1-2 to that studied by Gamj (2006).
Unfortunately, his Eq. 35 and 36 are in error, that 13 the
comlact solution for Y? (1’ in our notation) should be
Y, :gaz {x*—6x’ +5) and hence his Eq. 36 should be:

1 1
8=1+§zr:(x2 _l)+382(X4_6X2 +5)

Since this 3-term HPM solution is exactly the same as
the solution by the classical perturbation method,
(Gangy, 2006) (corrected) HPM solution 1s valid only for
small £ Ganji (2006) poor HPM seclution is due the
improperly chosen mitial conditions Y, = 1, Y, = 0,
Y,(1) = 0 etc. for his linear system of ODEs 30-32. The
proper initial conditions should instead be Y, (0) = ¢, Y,(0)
=Y, (0)=0etc.

In Fig. 1, we present the correct 6-term MHPM
solution (15), the 3-term HPM solution given by
{Ganji, 2006) and the 13-term ADM solution (Chang, 2005).
Obviously the accuracy of our 6-term MHPM solution is
verified by the 13-term ADM solution and the HPM
solution obtained by Ganji (2006) formulation is totally
incorrect.

Figure 2 shows the temperature profiles for several
assigned values of n at N=1 given by Eq. 17 on the
time step h = 0.01. All these numerical results are in very
good agreement with the 13-term ADM solutions. As
indicated in Eq. 17, the temperature along the fin is
expressed n an explicit function of position x. Thus the
temperature profile can be easily obtained for any
exponent value n. The characteristics of temperature
profiles have been discussed by Liaw and Yeh (194a,b);
and Dul’kin and Garas’ko (2002). The former used the
hyper-geometric formulas to determine the profiles and
the latter denved an inversed form for the temperature
distribution along the fin, and then evaluated the profile
via an iterative procedure. Chang (2005) used ADM to
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Fig. 1. Comparison between the correct 6-term MHPM
solution, the 3-term HPW of Ganji (2006) and the
13-term ADM solution (Chang, 2005) for Y= 0.7
andn =3

0 0z 04 08 08 1
X

Fig. 2: The numerical solutions @ at time step, h = 0.01
and M =1

analyze the thermal characteristics of straight rectangular
fin using 13 terms in the series expansion.

The present results are consistent with both of them
while with more straightforward process and less
computation and only & terms used in series expansion.
To make a proper comparison, we first determine the
accuracy of MHPM for the solution of Eq. 1 for time step
h=0.01.In Table 1, we compare 13 term ADM solutions
between & terms MHPM solutions for ime steps h =0.01
when n = -0.5,

In Table 2 we present the absclute errors between 6
terms MHPM solutions at time steps h =0.01 and 13 terms
ADM solutions when n = -0.5. In Table 3, we compare
13-term ADM solutions between 6 terms MHPM
solutions for time steph =0.01 when n = -0.5. In Table 4
we present the absolute errors between & terms NMHPM
solutions at time step h = 0.01 and 13 terms ADM
solutions when n=-0.5. On the time step h=10.01the
t-term WMHPM  solutions match with 134erm ADM
solutions at least 4 decimal places. This suggests that the

Table 1: Comparison betaveen 13 term ADN solution and 6-term WHPM
solutions at time step h=001whenn= 0.5

X s L

0.0 0.5944461 335 0.504451 5788
0.1 05083032328 0.508 3086955
0.2 0.60989047a10 0.6090040021
03 0.6293003851 0.6203149003
0.4 065065561362 0.6566618639
0.5 06921100992 06021159838
0.g 07358860771 0.7358030398
0.7 07882456451 0.7882518437
0.8 08404858433 0.840 4018787
0.8 09100458118 0.9190505587
1.0 0.8905000000 0.5900000000

Tahle 2. Absohute errors between 13-term ADN, and 6-term MHPR at time
step b= 001 whenn=-03

X kb |

0.0 5 445E-06
0.1 5 463E-08
0.2 5.516E-08
0.3 5 B04E-06
0.4 572RE-08
0.5 5 885E-08
0.6 6 063E-06
07 6.198E-06
08 6 35E-08
ne 4 747E-08
1.0 1 O00E-15

Table 3. Comparison betareen 13 -term ADW solhtions and -term LWIHPI
solutions at tine stepsh= 0.0l whenn= 0.5

X s Lt

0o 08161488485 08162264350
01 08176202306 08177076630
0.2 08221028046 08221838088
0.3 0.8206659200 08207553375
0.4 08405060050 0.840 50758302
0.5 08548771743 08549777252
0.8 0.8731040540 08732758154
07 0.8959000779 0.8960248088
08 0.9238322087 0.9239663030
ne 09580195857 09581375040
1.0 1000000000 1000000000

Tahle 4 Absohute errors between 13 -term ADK, and 6-term MHPLI at time
stet h= 001 whenn=-0.5

X i
0.0 TI50E05
01 TE43E05
0.2 8.100E05
0.3 8.541EDS
0.4 9.183E05
0.5 1.006E-04
0.8 1L11SE04
0.7 1247E 04
08 1342E 04
e 1.1IR0E 04
1.0 1.000E-14

present MHPM solutions using only & terms on the time
step h =0.01 are accurate encugh whenn=-0.5andn =5
Similar conclusions have been obtained for the other
values of 4 = n = 5. Several cases with variations of
parameters M and n are also tested and it can be conclude
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that the use of 6 terms in Eq. 17 is sufficient to yield
accurate results. Obviously, the present method gives
fast and accurate results instead of complicated nmumerical
integration and iteration procedure.

CONCLUSION

In this study, the power-law fin-type problem was
solved via a new algorithm of HPM. Tt is obvious that the
new algorithm completely overcomes the shortcomings of
parameter N. The solutions obtained are in convergent
series form with easily computable terms. Comparison
with the decomposition method shows that the
homotopy-perturbation method i3 a promising tool for
finding approximate analytical solutions to strongly
norlinear problems.
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