Synthesis under Microwave Irradiation, Characterization and Application of Alkyliminodimethylenediphosphonic Acids in Solvent Extraction of Iron (III)

Nuclear Research Center of Draria, Box 43 Sebala, Draria, Algiers, Algeria
Department of Chemistry, University of King Saud, College of Science, Box 2455 Riyadh 11451, Saudi Arabia
Department of Chemistry, University of Mouloud Mammeri, Faculty of Sciences, Box 17 Tizi-Ouzou, Algeria
Laboratory of Catalysis, Department of Chemistry, University of Tlemcen, Box 119, Tlemcen, Algeria

Abstract: The synthesis under microwave irradiation, characterization and application of new alkyliminodimethylenediphosphonic acids in solvent extraction of iron (III) has been investigated. The alkyliminodimethylenediphosphonic acids synthesized were: hexadecyliminodimethylenediphosphonic acid (HIDMP, H₂L₁) and decyliminodimethylenediphosphonic acid (DIDMP, H₂L₂). After purification, these products were characterized by elemental analysis and by FT-IR, ¹H NMR, ¹³C NMR, ³¹P NMR spectroscopy. In this study, we proposed a tentative assignment for the shifts of those two ligands and their specific complexes with iron (III). We also carried out the extraction of Fe (III) by HIDMP and DIDMP from [chloroform+2-octanol (v/v: 90%/10%)] solutions at an aqueous to organic phase ratio (1/1) and at room temperature. Experimental results showed that HIDMP and DIDMP are synthesized efficiently and rapidly in good yields (85-88%) under microwave irradiation. The extraction yields are more significant in the case of the HIDMP (99%) which is equipped with a hydrocarbon chain, longer than that of the DIDMP (95%). Logarithmic plots of the iron (III) distribution ratio vs. pH, and the extractant concentration showed that the ratios of extractant to extracted iron (III) are 3:1. The metal complexes formed in organic phase are [Fe (H₂L₁)₂, 3H₂O] and [Fe (H₂L₂)₂, 3H₂O] with HIDMP and DIDMP, respectively. A spectroscopic analysis of the metal complexes has showed that coordination of iron (III) takes place via oxygen atoms in the phosphonic groups, whereas the nitrogen atom remains rather uncoordinated. The equilibrium constants for the extraction of iron (III) were found to be 10.44×10⁻² and 1.98×10⁻³ for HIDMP and DIDMP, respectively.

Key words: Alkyliminodimethylenediphosphonic acids, synthesis, microwave irradiation, extraction, iron

INTRODUCTION

Organophosphorus chemistry is exploring the properties and reactivity of organophosphorus in particular aminophosphinic acids compounds. Aminophosphinic acids, synthesized for the first time in 1945 by Schwarzenbach et al. (1949), Matczak-Jon et al. (1999) and Naydenova et al. (2010). These acids are very good ligands for the coordination of metal ions so they can be used for the extraction of metals such as uranium, iron, copper and nickel in hydrometallurgy (Villemin et al., 2008; Naydenova et al., 2010; Matczak-Jon et al., 1999; Abderrahim et al., 2006; Belkhouch et al., 2006; Didi et al., 2004; Sawaju et al., 1992; Turner et al., 2003; Nowak, 2002; Rao, 2010). Aminophosphinic acids form also complexes on the surface of metal such as iron and are consequently very good as anti-corrosion agents (Villemin et al., 2008; Matczak-Jon et al., 1999; Nowak, 2002). These acids are also used as insecticides, herbicides, bactericides, plant-growth regulators, enzyme inhibitors, anticancer agents, etc., (Naydenova et al., 2010; Kukhar and Hudson, 2000; Matczak-Jon et al., 1999; Juribasie et al., 2009; Kurzak et al., 2000; Kafarski and Lejezak, 2000, 2001; Sun et al., 2003; Ying and Mao, 2005; Leboue et al., 2005; Yoshikawa, 1995; Redmore, 1972).

Aminophosphonic acids are generally obtained by hydrolysis of esters via Kabachnik-Fields reaction (Kabachnik and Medved, 1952; Fields, 1952; Moedritzer and Irani, 1966; Villemin et al., 2008; Naydenova et al., 2010). This reaction can be activated by...
microwave irradiation; nevertheless there are often secondary reactions during the hydrolysis (Villemin et al., 2008; Naydenova et al., 2010; Jurisicic et al., 2009). The synthesis of Irani-Moedrizer is less general than the Kabachnik-Fields reaction, but it has the advantage of obtaining the amidophosphinic acids without a step of hydrolysis (Moedrizer and Irani, 1966). The Irani-Moedrizer reaction times are in general long, so the use of microwave for assisting the reaction is of interest (Villemin et al., 2008; Naydenova et al., 2010). This reaction is carried out in aqueous medium under microwave irradiation with an aqueous solution of formaldehyde in acidic aqueous medium without organic solvent. Water is an inexpensive, non-flammable, non-toxic solvent and has the advantage of warming up quickly under microwave irradiations. Carrying out reactions using microwave heating, as opposed to conventional heating, has the major advantage of shorter reaction times because of the rapid heating (Villemin et al., 2008; Lidstrom and Tierney, 2005; Loupy, 2006). The Irani-Moedrizer reaction can be compared to a Mannich reaction and takes place by the addition of the phosphorous acid on iminium salt formed by reaction of formaldehyde with the amine in acidic medium (Moedrizer and Irani, 1966).

In this study, we describe the synthesis of two new alkylaminodimethylenediphosphonic acids under microwave irradiation. The synthesis of the imidomethylenediphosphonic acids under microwaves irradiation is fast and efficient than a conventional heating (Didi et al., 2007; Simeon, 1998; Villemin et al., 2008; Naydenova et al., 2010). These acids exhibited high complexation efficiency towards zine (II), magnesium (II), calcium (II) and nickel (II) ions. This results from both denuegatively charged phosphonate groups as well as the imino-nitrogen present in their structure (Matczak-Jon et al., 1999; Didi et al., 2007; Naydenova et al., 2010). In fact, we have synthesized hexa-decyl-dimethylenediphosphonic acid, $C_{18}H_{35}N\left(CH_{2}PO_{3}H_{2}\right)_{2}$ (HIDMP, $H_{2}L^{1}$) and dodecyl-dimethylenediphosphonic acid, $C_{12}H_{26}N\left(CH_{2}PO_{3}H_{2}\right)_{2}$ (DIDMP, $H_{2}L^{1}$) for such a purpose. The characterization of these products were carried out by elemental analysis and by FT-IR, 1H NMR, ^{31}C NMR, ^{31}P NMR spectroscopy. We have also tested the chelating properties of these extractants towards iron (III) ion.

MATERIALS AND METHODS

This research project was conducted from January 2009 to March 2010 in the Nuclear Research Center of Draria, Algiers, Algeria.

Reagents and solutions: The reagents used in this study were 1-hexadecylamine (90%, Alfa), 1-decylamine (95%, Merck), phosphorous acid (99%, Aldrich), formaldehyde (37.5%, Panreac), hydrochloric acid (36%, Merck) and iron (II) chloride hexahydrate (99%, Labosi). Chloroform (Merck) and 2-octanol (Prolabo) of analytical grade were used without further purification. The aqueous solutions of 0.015 M iron (III) were prepared from chloride hexahydrate and the organic solutions were prepared from of HIDMP and DIDMP (0.03 to 0.3 M) dissolved in the organic solvent [chloroform:2-octanol (v/v: 90%/10%)].

Instrumentation: The microwave experiments were conducted in Synthrowave 402 microwave oven supplied from Prolabo. This microwave oven fitted monomode resonance cavity TE_{010} at 2450 MHz working with 800 W max and equipped with a universal generator MES 73-800 (Micro-ondes Energie Systemes 2). $^{31}C\left[^{1}H\right]$, $^{31}P\left[^{1}H\right]$ and 1H-NMR spectra were measured on Bruker AC 250 working at 250 MHz in CDCl$_3$ solution. Infrared spectra were measured on a Perkin Elmer 16 PC-FTIR equipped with a thermostat to maintain the temperature of the sample cell at 25 0.1°C. Elemental analysis were performed using a ThermoQuest NA2500 elemental analyser. pH measurement were taken on a potentiometer Consort C 831 with combined glass electrode was used to measure the pH of the aqueous solution before and after extraction. In a water-acetone mixture (5:15) a known mass of each sample titrated by a solution of NaOH (5×10⁻⁴M). Metal ion was determined using the atomic absorption spectrophotometer, system GBC Avanta. Water was titrated in the organic phase by the use of a Mettler DL18 Karl Fisher Titrator.

Synthesis of the extractants: HDIDMP and DIDMP were prepared by a Mannich type reaction according to the procedures previously described (Moedrizer and Irani, 1966; Didi et al., 2007; Simeon, 1998; Villemin et al., 2008; Naydenova et al., 2010; Turner et al., 2003; Yoshikawa, 1995).

A mixture of phosphorous acid (1.64 g, 20 mmol), water (2 mL) and hydrochloric acid (2 mL) was added to a 2 mL 1-decylamine (10 mmol) placed in a tube made of quartz. The mixture is irradiated for 5 min at 240 W. Three milliliter formaldehyde (40 mmol) were then added quickly and the assembly is irradiated at 400 W for 8 min. The product precipitated directly into the tube, then it is filtered, then washed with acetone and rinsed with water.

The product was obtained as white solid. Its melting point is 248°C. The yield is 88%. The reaction of the synthesis is of the following form:
\[\text{C}_n\text{H}_{3n+1}\text{NH}_2 + 2\text{CH}_2\text{O} + 2\text{HP(O)OH}_2 \rightarrow \text{C}_n\text{H}_{3n+1}\text{N}[\text{CH}_2\text{P(O)(OH)}_2]_k\text{2H}_2\text{O} \]

The displacement of vP = O to lower frequency in the infrared spectra indicates the existence of intermolecular hydrogen bonds P = O...H-OP. The band appearing between 1650-1520 cm\(^{-1}\) indicates the existence of bond \text{N}...H intramolecular of \text{N}...H-O-P.

Extraction of Fe (III) by HIDMP and DIDMP: The extraction experiments results are discussed in term of extraction yield (Y) and distribution ratio (D) defined as follows:

\[Y(\%) = \frac{m_i - m_f}{m_i} \times 100 \]

\[D = \frac{m_i - m_f}{m_r} \times \frac{V_a}{V_{org}} \]

where, \(m_i \) is initial mass of Fe (III) in aqueous phase, \(m_f \) is mass of Fe (III) after extraction; \(V_a \) is the volume of the aqueous phase; \(V_{org} \) is the volume of the organic phase.

The variable \(Q \) is the ratio of the number of moles of extractant in organic phase versus the number of moles of metal in aqueous phase before extraction.

\[Q = \frac{n_{extract}}{n_{sol}} \]

The variation of the extraction yield test of 0.015 M iron (III) as a function of \(Q \) is shown in Fig. 1.

Figure 1 shows the yield of extraction of iron (III) increases with \(Q \). Working with extractants concentrations range 0.03 to 0.3 M (\(Q = 2 \) to 20), we reached a yield of 99% for HIDMP and 95% for DIDMP. The extractant with a longer alkyl group forms more hydrophobic complexes. HIDMP and DIDMP present a similar extraction power, but the hydrophobic character determines the amount of extraction. The hydrophobic character of ligand can be determined calculating log \(P \) which is defined as the partition coefficient between two phases of a substance, generally n-octanol and water.
Table 1: HIDMP and DIDMP characteristics

<table>
<thead>
<tr>
<th>Products</th>
<th>HIDMP</th>
<th>DIDMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C19H28N(CH3)PO2H2</td>
<td>C19H28N(CH3)PO2H2</td>
</tr>
<tr>
<td>pKa</td>
<td>3.2, 6.5, 8.64 ± 0.05</td>
<td>3.7, 6.87, 8.8 ± 0.05</td>
</tr>
<tr>
<td>Elemental analysis</td>
<td>% C: 54.89; % H: 7.76; % N: 5.96 Exptl. 50.43 9.88 6.40, Calculated 50.34 9.62 6.67</td>
<td>% C: 54.89; % H: 7.76; % N: 5.96 Exptl. 41.25 8.61 6.40, Calculated 41.73 8.49 6.17</td>
</tr>
<tr>
<td>1H NMR (ppm)</td>
<td>0.85 (t, 3H, (CH3)), 1.38 (m, 2H, (CH2)), 0.83 (d, 2H, JCH = 6.17 Hz), 3.06 (t, 2H, (CH2N2)), 3.21 (d, 2H, (N-CH2-P)), 4.89 (d, 2H, (PO(OH)2))</td>
<td>0.85 (t, 3H, (CH3)), 1.24 (m, 1H, (CH2)), 1.75 (d, 2H, (CH2)), 3.40 (t, 2H, (CH2N2)), 3.39 (d, 2H, (N-CH2-P)), 4.10 (d, 2H, (PO(OH)2))</td>
</tr>
<tr>
<td>13C NMR (5 ppm)</td>
<td>14.80 (t, (CH3)), 22.50 and 32.10 (14t, (CH2)), 53.80 (t, (CH2N2)), 52 (d, JCH = 142.1 Hz, (N-CH2-P))</td>
<td>14.0 (t, (CH3)), 22.1 and 31.3 (t, (CH2)), 53.5 (t, (CH2N2)), 51.2 (d, JCH = 41.3 Hz, (N-CH2-P))</td>
</tr>
<tr>
<td>31P NMR (ppm)</td>
<td>+ 6.08 (s)</td>
<td>+ 5.57 (s)</td>
</tr>
<tr>
<td>FT-IR (cm^-1)</td>
<td>3590-3100 (vs. OH), 2928 (vs. CH), 2858 (vs. CH), 2750-2550 and 2380-2100 (vs. POH), 1650-1520 (vs. NH), 1180 (vs. P = O)</td>
<td>3760-3200 (vs. OH), 2924 (vs. CH), 2854 (vs. CH), 2770-2570 and 2364-2084 (vs. POH), 1648-1518 (vs. NH), 1168 (vs. P = O)</td>
</tr>
</tbody>
</table>

Exptl. and calcd: experimental and calculated percentages for the elemental analysis of the synthesized compounds, δ (ppm): chemical shift, s: singlet, d: doublet, t: triplet, m: multiplet, is: symmetric stretching, iss: antisymmetric stretching.

Modern molecular modeling software allows the log p-values, calculated using ChemDraw Ultra (Cambridge Soft) are respectively 1.16 for DIDMP and 5.93 for HIDMP showing that HIDMP is strongly hydrophobic (Dici et al., 2002, 2008).

Stoichiometry of extracted species: In the work on stoichiometric relation for the extraction of iron complex with HIDMP (HL1) and DIDMP (HL2), we have supposed that the solubilities of the extractant and the iron-extractant complex in the aqueous phase are negligible; the overall reaction in the extraction of metal cations by cationic extractants, as the case of HIDMP and DIDMP, can be shown as following:

\[
M^{n+} + xH_2O + nHL \rightarrow M(H_{(a-x)}L)_n \times xH_2O + nH^+ \quad (6)
\]

where, H_L is the molecule of extractant, M is the metal (Fe), n valency of metal (Fe^{n+}), n molecules of extractant engaged in the reaction, n/m number of protons exchanged by each extractant and x number of molecules of water.

The equilibrium constant of the above reaction, K_m, can be given as function of molar concentration:

\[
K_m = \frac{[M(H_{(a-x)}L)_n \times xH_2O][H^+]^n}{[M^{n+}][H_L]^x} \quad (7)
\]

Substitution of the distribution ratio, which is defined by the concentration of metal in organic phase divided by that in aqueous phase, into Eq. 8 results in:

\[
K_m = \left[\frac{[M(H_{(a-x)}L)_n \times xH_2O][H^+]^n}{[M^{n+}][H_L]^x} \right]^{1/2} \quad (8)
\]

Taking logarithms of Eq. 8, one obtains:

\[
\log D = \log K_m - n \log [HL] + n \log [H^+] \quad (9)
\]

\[
\log D = \log K_m + n \log [HL] + m \log pH \quad (10)
\]

The stoichiometry of the extracted species was determined by analysing the experimental data. The conventional slope analysis method was used. Figure 2 shows the plots of log D versus log [extractant] which gave two straight lines with good correlation coefficients 0.998 and 0.997 and slopes equal to 3.28, which is close
Fig. 3: Effect of equilibrium pH on the distribution ratio for Fe(III). [Fe$$^{3+}$$] = 0.015 M, V$_{aq}$/V$_{org}$ = 1, t = 25°C to 3 and 3.15, which is close to 3 for HIDMP and DIDMP, respectively. This result suggests that three molecules of extractant react with one iron(III) ion. Figure 2 also shows that the distribution ratio of iron (III) increases with the increase in extractant concentration. The distribution ratios are more significant in the case of the HIDMP which is equipped with a hydrocarbon chain, longer than that of the DIDMP. Figure 3 shows the plots of log D versus pH$_{aq}$ which also gave two straight lines with good correlation coefficients 0.998 and 0.994 and slopes equal to 3.19, which is close to 3 and 3.06, which is close to 3 for HIDMP and DIDMP, respectively. This indicates that three protons are released during the cation exchange reaction. The plots log D versus log [extractant] and the plots log D versus pH$_{aq}$ suggest that the ratio of extractant to extracted iron (III) is 3:1 (Songling et al., 1993; Kong et al., 2004; Sun et al., 2003; Kurzak et al., 2000; Rao, 2010). The equations extraction equilibrium can thus be written as:

$$\text{Fe}^{3+} + 3\text{H}_2\text{O} + 3\text{HL}^+\rightleftharpoons \text{Fe}^{3+} + 3\text{H}_2\text{O} + 3\text{H}^+$$ (11)

$$\text{Fe}^{2+} + 3\text{H}_2\text{O} + 3\text{HL}^+\rightleftharpoons \text{Fe}^{2+} + 3\text{H}_2\text{O} + 3\text{H}^+$$ (12)

According to the above equations extraction equilibrium, The metal complexes formed in organic phase are [Fe(3H2L')$_3$, 3H2O] and [Fe(3H2L')$_3$, 3H2O] for HIDMP and DIDMP, respectively (Songling et al., 1993; Sun et al., 2003; Kurzak et al., 2000). Protons, intervening in our extraction, correspond to the pK$_a$ of HIDMP and DIDMP, 3.2 and 3.7, respectively. HIDMP and DIDMP extract the iron (III) ions in cationic exchange mode. The two last values of pK$_a$ obtained by potentiometric measurement confirm that the extracting agent can exchange only one or two protons per molecule. We also note that the extraction of iron (III) by HIDMP and DIDMP is accompanied by three water molecules extraction. The equilibrium constants for the extraction of iron (III) were found to be 10.44×10$^{-3}$ and 1.98×10$^{-3}$ for HIDMP and DIDMP, respectively.

The structures of the complex HIDMP-Fe (III), 3H$_2$O and HIDMP-Fe (III), 3H$_2$O are indicated in Fig. 4 and 5.

Figure 4 and 5 show that the iron complexes, [Fe(H$_2$L')$_3$, 3H$_2$O] and [Fe(H$_2$L')$_3$, 3H$_2$O], are formed by coordinating of each iron (III) ion to three phosphate oxygen atoms from three molecules of extractant agent. Figure 4 and 5 show also that these complexes contain three water molecules. The HIDMP and DIDMP exhibited high complexation efficiency towards iron (III) ions. This results from both dinegatively charged phosphate groups as well as the imino-nitrogen and the hydrophobic character present in their structure (Mateczak-Jon et al., 1999, Naydenova et al., 2010, Kabachnik et al., 1974, 1975; Van Hecke and Goethals, 2006; Sun et al., 2003).

HIDMP-Fe (III) and DIDMP-Fe (III) spectra: The solid complex HIDMP-Fe was prepared by stirring the imidodimethyleinediposphonic acid in the organic solvent mixture (chloroform+2-octanol), with an aqueous solution of Fe (III). After separation of the phases and evaporation of the organic solvents, the solid complex was washed with water and dried. We have observed a shift of P = O band from 1180 to 1081 cm$^{-1}$. In the complex, a new IR band appears at 631 cm$^{-1}$ attributed to the distortion vibration PO-Fe. Similarly, comparison of the spectra of DIDMP and DIDMP-Fe show a shift the 1168 P = O band to 1069 cm$^{-1}$. A new band in DIDMP-Fe appears at 624 cm$^{-1}$ attributed to the deformation
vibration of PO-Fe. The two deformation vibrations PO-Fe showed that the bond between P-O and Fe for HIDMP is stronger than with DIDMP. A spectroscopic analysis has showed that coordination of iron (III) takes place via oxygen atoms in the phosphonic groups, whereas the nitrogen atom remains rather uncoordinated (Kabachnik et al., 1975; Kurzak et al., 2000).

CONCLUSIONS

The obtained results from this study can be summarised as following:

- The HIDMP and DIDMP are synthesised efficiently and rapidly in good yields (85-88%) under microwave irradiation.
- The yields of extraction of iron (III) increases with the ratio Q. HIDMP and DIDMP can complex and extract, respectively 99 and 95% of iron (III) by using a large excess extractant agent (Q = 20).
- HIDMP ligand has a stronger extracting power for iron(III) than DIDMP. This fact is related to more hydrophobic character of HIDMP vs. DIDMP.
- The HIDMP and DIDMP exhibited high complexation efficiency towards iron (III) ions. This results from both dinegatively charged phosphonate groups as well as the imino-nitrogen and the hydrophobic character present in their structure.
- Logarithmic plots of the iron (III) distribution ratio vs. $\mathrm{pH_{in}}$ and the extractant concentration showed that the ratio of extractant to extracted iron (III) is 3:1. The metal complexes formed in organic phase are [Fe(HL)$_2$]$_3$, 3H$_2$O and [Fe(HL)$_3$]$_2$, 3H$_2$O for HIDMP and DIDMP, respectively. Protons, intervening in our extraction, correspond to the $\mathrm{pK_a}$ of HIDMP and DIDMP, 3.2 and 3.7, respectively. HIDMP and DIDMP extract the iron (III) ions in cationic exchange mode. The two last values of $\mathrm{pK_a}$ obtained by potentiometric measurement confirm that the extracting agent can exchange only one or two protons per molecule.
- Extraction of iron (III) by HIDMP and DIDMP is accompanied by three water molecules extraction.
- A spectroscopic analysis has showed that coordination of iron (III) takes place via oxygen atoms in the phosphonic groups, whereas the nitrogen atom remains rather uncoordinated.
- The equilibrium constants for the extraction of iron (III) were found to be 1.94×10^{-3} and 1.98×10^{-3} for HHDP and DHDPA, respectively.

ACKNOWLEDGMENTS

The authors would like to thank Nuclear Research Center of Draia, King Saud University King Saudi University and University of Mouloud Mammeri for his help and encouragement in this research project.

REFERENCES

Mellah, A. and D. Benachour, 2006. Solvent extraction of heavy metals contained in phosphoric acid solutions by the 7-(4-ethyl-1-methylecylet)-8-hydroxyquino line in kerosene diluent. Hydrometallurgy, 81: 100-103.

