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Detecting I.ocal Variations in Spatial Interaction Models by
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Abstract: The development of local forms of spatial analysis has been the subject of mntense research over last
decade. The condition that observations are independent is not frequent in spatial data analysis. Parameter drift
is often recognized when a model is calibrated separately across locations in space. In this study, we propose
a local calibration procedure for handling varying parameters estimates of an origin-constrained spatial
interaction model. In this context, the estimates of local parameters depend both on origins and destinations
and a four dimensional space 1s involved. A suite of local parameters can be obtammed by the maximisation of
a weighted maximum likelihood function, exploiting the same principle of Geographically Weighted Regression
(GWR) approach. Generally, the function for the weighting scheme in GWR uses only distance (geographical
space) to determine weights. We propose a modified version of weighting function which takes into account
both the spatial distance and a function of strength of connection between two specific destinations. The
performance of different weighting functions for modelling the effects of spatial heterogeneity on flow data are
compared and evaluated.

Key words: Spatial interaction models, geographically weighted regression, spatial non-stationarity, strength

of connection function, migration flows

INTRODUCTION

Spatial mteraction models focus on origin-destation
pairs of regions and use flow data. They have been
applied in many contexts in order to understand and
explain movements of people, commodities, information,
ideas, capital or knowledge from one set of places to
another (migration studies, shopping, travel to work,
airline passengers traffic). The simplest form of spatial
interaction models is based on the analogy of Newton’s
law of gravity in physics. Basically, the flow between two
places is a function of the ability of an origin to generate
flows (the so-called propulsiveness), the capability of a
destination to attract flows (the so-called attractiveness)
and a sensible measure of separation of origin and
destination (typically named spatial impedance). More
solid foundations to spatial interaction models was
provided by A.G. Wilson by thewr statistical mechamics
entropy formulation, which ensures that these models can
be cast in a probabilistic form (Roy, 2004). Traditionally,
fitting the spatial interaction models to the observed data,
15 a question of estimating the imknown perameters: the
ones characterising the propensity of each origin to
generate flows, the ones characterising the attractiveness
of each destination and the one related to distance
deterrence effect. One way to enhance the spatial

interaction modelling is to properly take into account the
parameters instability across the space, otherwise 1t would
be possible to discover a severe misspecification bias in
the general spatial interaction modelling formula
(Tiefelsdorf, 2003). For example, if the distance decay
parameter 1s not stable across the space, we can observe
a counter-intmtive finding: an amplification of mteraction
as distance increases. Model parameters can be correctly
interpreted only once spatial structure effects are under
control. According to Fotheringham (1981), spatial
structure can be defined as the size and configuration of
the origing and destinations of regional system under
investigation. The underlying spatial structure of spatial
interaction models can be tackled from different pomts of
view. Fotheringham (1983) proposes to introduce m the
modelling a Competing Factor (CD) which represents the
relationship between destination j and all other
destinations, also named accessibility wvariable. The
essential idea 1s that the movers are faced with a set of
destinations competing for their attention: the more
accessible a destination is to all other destinations in a
spatial system, the less likely it 1s that destination 1s a
terminating point for interaction from any given origm,
ceteris paribus. The spatial proximity perspective expects
competition only by spatial association. Lately, Jim (1998)
proposes an alternative viewpoint on competition among
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destinations, which contemplates the idea that
destinations which are widely separated in space, or
which vary greatly mn size and/or distance from a given
origin, may exert nevertheless identical influences on
decision makers at that origin. Anyway, competing
destinations models represent a good example for
identifymng of the misspecification global models and for
unproving the global statements of spatial behaviour.
Another approach which attempts to accommodate spatial
heterogeneity, by allowing the parameters of the model to
vary with the spatial location of data, regards the
expansion method of Casetti (1972) and Jones and Casetti
(1892). Recently, Fischer and Griffith (2008) illustrate two
approaches for a proper specification of spatial interaction
models, facing with the problem of accounting for spatial
autocorrelation effects. Firstly, following a spatal
econometric perspective, they specify a spatial process
for the disturbance terms reflecting origin and destination
autoregressive dependence among orign-destation
tflows (Le Sage et al., 2007). A second methodology relies
on the eigenfunction spatial filtering approach developed
by Griffith (2007). Chun (2008) shows the utility of
elgenvector spatial filtering approach in a migration study.
Ths study follows a GWR approach to detect spatial non
stationarity of spatial interaction models. A modified
equation for the computation of weights of GWR is also
proposed. In particular, we recommend to mcorporate in
the weighting scheme both the spatial distance and a
function of strength of connection between two specific
locations. The potential advantages of our proposal are
mvestigated by assessing the model’s ability in
replicating the known matrix flows.

SPATIAL NON-STATIONARITY AND
LOCAL MODELS

The development of local forms of spatial analysis
has recently gained in prominence (Anselin, 1995; Getis
and Ord, 1996, Openshaw and Abrahart, 1996). The
development of local models offers an excellent way to
look at the local exception rather than broad
generalisations, in order to understanding differences
across space rather than similarities. In particular, local
statistics allow relationships to be explored in more detail
and will inevitably lead to a better understanding of
spatial processes. As Tobler points out through the First
Law of Geography: everything is related to everything
else, but near things are more related than distant things.
The quantitative outcome of this expression are the
locational effects. They manifest themselves in two ways,
namely, through spatial autocorrelation and spatial
non-stationarity. Consequently, the observed values
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drawn from spatial data sets not only will be spatially
clustered (spatial autocorrelation), but also exhibit
significant patterns of spatial non-stationarity, which is
related regional the
observational space: every location has an intrinsic
degree of distinctiveness due to its situation with the
respect to the rest of spatial system. Hence, spatial
non-stationarity exists when the same stimulus provokes
a different response m different part of the study region.
Accordingly, the relationships can change across space,
that 18 the relationship between variables under study 1s
not constant from one location to the next. Very often,
there are many unquantifiable factors which make one
location different from another or involve extremely
complex interactions that cannot be parsimoniously
modelled. Tn literature, there are several approaches
dealing with the problem of spatial non-stationarity.
Among them, a possible technique to display spatial
variations 1n relationships could be to parameterise a
global model and look at the residuals to detect patterns.
Hence, 1t 1s possible to use patterns i residuals to define
patches and specify a separate equation for each patch or
stratum. A different solution could be achieved allowing
parameters to vary across space and this 1s the essence of
Geographically Weighted Regression (GWR).

to differentiations  within

THE THEORETICAL FOUNDATION OF
GEOGRAPHICALLY WEIGHTED REGRESSION

The GWR, developed by Brumsdon et al. (1996) and
Fotheringham ef al (1998), 1s a non parametric
methodology for the investigation of geographical drift of
regression parameters. This technique extends the
traditional regression model, by allowing the estumated
coefficients to vary from location to location. The main
contribution of the GWR methodology 1s the use of
distance-weighted sub-samples of the data to produce
locally linear regression estimates for every point in the
space. Each set of parameter estimates is based on a
distance-weighted sub-sample of nearby observations.
The model has the general form:
i=1..,

v, :BD(U‘V‘)‘F;B]((H‘V‘)X*‘FE‘ (1)

where, (uv,) denotes the co-ordinates of i-th pomt in
space and Py(uv,) 1s the local coefficient for the k-th
explanatory variable at location i.

The location-specific regression coefficients B{uv,)
are functions of longitude and latitude coordinates w, and
v;. More precisely B(uv,) is a realisation of continuous
function B(uy;) at point 1. The local parameters B,(uy,) are
estimated by weighted least-squares procedure. The
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weights w; are defined by a function of distance d;
between a specific point j in the space at which data are
observed and any pomt 1 in the space from wlich
parameters are estimated.

The GWR approach gives more weights to data from
observations close to i data near to point i have more
influence in the estimation of the B,(uv,)’s than do the
data located farther from 1. Similar to kernel regression
and kernel density estimation, the GWR estimates
location-specific parameters using weighted least square
estimation; the only exception regards the weights: they
are based on locations in geographic rather than attribute
space. A number, say n, of unknown vectors of local
regression coefficients are to be estimated:

B1(“1=V1) BI(UZ’VZ) B1(“n>vn)

BZ(U1>V1) Bz (uz vy BZ(uh’vn)
By = _ By = _ By = _

Bk(ul’vl) Bk(UE’VE) Bk(un’vn)

The GWR estimates of the unknown local parameter
vector [ are given by:

5 . -1, . 2
By =[XWX] XWyy i=L..n 2

which provides estimates for each variable k and each
geographical location 1. In Eq. 2, W, is the nxn spatial
welght matrix which has the form:

w, ... 0 0
0w, 0

W.=| . . .
(i : : :

0 0 w

and whose diagonal elements are the weights of each
observation. For example, w,, 1s the weight of pont 1 on
the calibration of the model around point i. Thus the
weighting of an observation is not longer constant in the
calibration but varies with different locations. In the GWR
framework, several weighting functions (kernels) can be
considered and calibrated (Fotheringham et al., 1998) for
calculating the weighted least-squares estimators (2),
although they tend to be Gaussian or Gaussian-like,
reflecting the type of dependency found in most spatial
processes. Whichever weighting function is used, the
results will be sensitive to the degree of distance-decay
(bandwidth). As the bandwidth mcreases, the parameter
estimates tend to the estimates from a global model. In
some parts of the region, where data are sparse, the local
regressions may be based on relatively few data points
and may not estimate the parameters reliably. Conversely,
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fixed kernels in regions where data are dense may suffer
from bias when the kernel are larger than needed. Tn order
to avoid tlus problem, spatially adaptive weighting
functions can be incorporated: these functions would
have relatively small bandwidths in regions with high
density of data points and larger in regions with low
density of data pomts. Optimal bandwidth selection 1s a
trade-off between bias and varance: too small a
bandwidth leads to large variance in the local estimates;
too large a bandwidth leads to large bias in the local
estimates. Currently, Cross-Validation (CV) procedure,
Generalised Cross-Validation (GCV) criterion of
Loader (1999) or AIC (Akaike Information Criterion)
(Hurvich et al., 1998) are generally employed to select the
finest value of bandwidth.

CALIBRATING A LOCAL SPATIAL
INTERACTION MODEL BY MEANS OF THE GWR

From previous section, it 1s possible to argue that
GWR provides a frameworlk for evaluating how the
strengths of relationships change with the spatial
resolution of the analysis. Examples of application of
GWR can be found in a variety of disciplines (health,
social science, economy, wrban economics ), where it has
been also applied as a graphical tool for data exploration.
By contrast, there are few attempts to measure local
variations in spatial interaction modelling (Nakaya, 2001).
This neglect may be because spatial interaction models
are more complex than models for the geographic
distribution of attribute data, with each region beng
assoclated with several values as an origin as well as a
destination. Tt is worth stressing that the spatial
disaggregation of spatial flows constitutes one of the
earliest examples of providing local information on
relationships (Fotheringham and O’Kelly, 1989). In
this study, we propose a local calibration procedure
for handling varying parameter
origin-constramed spatial interaction model. Suppose we
deal with a spatial system consisting of m origin regions
and n destination regions. Let, y; denote cbservations on
independent random variables, say y,, (where, 1 denctes
the origin regions and j the destination regions) sampled
from a specified probability distribution dependent upon
some mean (today’s prevailing specification is Poisson
regression). The statistical spatial interaction mode] takes
the general form as follows:

estimates of an

Y1] - }‘lij+81] (3)

where the mean ; could be specified as a function of
covariates measuring the characteristics of origin regions,
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destination regions and their separation (Bailey and
Gatrell, 1995). The origin-constrained medel, which
reflects destination effect and distance frictional effect,
takes the general form as follows:

“4)

w(x, .8 +yd
e ) Uieg

Y, = i

ij i

where, v(x; 0) 15 usually a linear function of the vector of
destination characteristics (destination attractiveness), 0
1s a vector of associated parameters; the notation d, is
used to represent the distance between i and j; v is a
distance deterrence effect; o is the balancing factor to
ensure the origin constraint on predicted flows. It is worth
noting that in the spatial mteraction context the estimates
of local parameters depend both on origms and
destinations. Hence, the understanding of spatial
interaction local interactions can be difficult as a four
dimensional space is involved: the geographical space in
which flow origins and flow destinations are located. One
way to derive a suite of local parameters could be to use
the conventional approach of spatial mteraction model
separately for each origin in the spatial system of interest.
This leads to recast the origin-constrained model outlined
above as:

) d..
Y, :O{,EV(X l[JJ)ﬂ’l[J) g

i i ij

(3)

Tocal parameters can be obtained by the maximisation
of a weighted maximum likelihood function, exploiting the
same principle of Geographical Weighted Regression
(GWR) approach, using an iterative algorithm,
implemented with an ad hoc R routine. In Eq. 5 the
parameters have the index of origin i, as they are
calibrated using flows from each origin separately; the
index between brackets indicates that the application of
GWR prmmciple refers only, for sumplicity, to the
destination locations. For each destination location, the
log-likelihood for the model in Eg. 5 includes the
geographical weights and it is specified as follows:

[

As previously pointed out, the crucial issue regards
the specification of the weighting function. The role of
the weighting matrix i GWR 1s to represent the
umportance of individual observations among locations.
Generally, the weight 13 determined by spatial distance
only: it should decrease as difference between the focal
point and its neighbours increases. One of the most
commonly used spatial weighting function is the
exponential distance-decay function:

1

;[Y}k (log o + v(x; I ) + Vﬂ(:)d"‘) - a‘e"(xﬁ:{l}*—‘ﬁ[l)dt)kam]
(6)

L,
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w,, = exp(-d,’ /h?) )

Function in Eq. 7 produces a decay of influence with
distance. If | and k coincide, the weighting of data at that
point will be the unity. The weighting of other data will
decrease according to a Gaussian curve, as distance
between j and k increases. This function has received
many other specifications (Brunsdon et al., 1996):

Wy = Jexp(djk /h)

In this study we propose a modified version of
weighting function which takes into account both the
spatial distance and a function of strength of connection
between two specific destinations. We assume that
destinations which share more visitors tend to be more
comected. Accordingly, we suggest the following format
for the weighting function:

(8)

d 2
Wy = CXp(- ti—lzx f(strenght of connection))

The strength of comnection between two specific
destinations 1s defined by:

2
Yy
Ve X Vs

where, y,; is the flow between k and destination j; y,, and
y,; denote the total flows of k and destination j
respectively. We expect that the introduction in the
weighting function of the strength of connection function
can improve the model’s ability to replicate the known
matrix flow. In order to evaluate the effects of our
approach on the estimates, the local spatial mteraction
models with spatial and spatial-strength of connection
weighting functions are compared.

A review of spatial interaction literature suggest that
it is possible to draw proper conclusion regarding model
performance examining the values of goodness-of-fit
measures. In this study, we make use of a combination of
two statistics: the Standardised Root Mean Square Error
(SRME)} and the Information Gain (Kmidnes and
Fotheringham, 1986; Fotheringham and Knudnes, 1987).
The first statistics is calculated as follows:

(5 e

SRME—{' !

[2 Y:J/(m *n)}

©)

i

where, Y, 1s the observed number of people moving from

region 1 to region j; Y; are the estimated interactions
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between i and j and m and n are the number of origin and
destination zones, respectively. The SRME statistic has
a lower limit of =zero, indicating perfectly accurate
predictions and an upper limit variable, depending on
the distributions of Y,'s, although, i practice, 1t 1is
often 1. Tnstead, the information gain statistics is

defined as:
G- Ej‘jj‘(pﬁln (p,/a;) (10)
where,
Py =Y/ Z;Yij
and

9 :%/22%
i

This goodness-of-fit statistic measures the difference
between two probability distributions. It has mimmum at
zero, indicating a completely accurate set of predictions;
the value of IG increases with differences between the
observed and predicted flows distributions. In detecting
local spatial variations of migration flows here, it is
assumed that the spatial weighting functions, under
study, are applied equally at each calibration point. The
bandwidth, equal to 100, 1s determined on the basis of
previous studies of phenomenon.

EXPLORING SPATIAL VARIATIONS IN
MIGRATION FLOWS PATTERNS

Here, we employ a spatial interaction approach to
relate flows of migrants among Polish provinces to some
potentially important explanatory variables. Polish internal
migration flows for the single year of 2004 and the
geographic resolution of NUTS-2 (the 16 Polish provinces
or voidvodships) constitute the empirical basis of our
analysis. The data used in this study are drawn from the
Polish Official Statistic (Polka Statystyca Publiczna). The
aim of this application 1s twofold. Firstly, we estimate
parameters of a global orgin-constrained spatial
interaction model in order to select variables which
determimne the relative attraction of destinations. Economic
variables (such as GDP per capita), labour market
variables (such as levels of employment), environmental
variables, embracing physical, economic, social and
political aspects, are seen as potentially important. Along
with the so-called gravity variables, population and
physical distance, also the unemployment rate and per
capita GDP are incorporated m the fitted models as
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covariates. Moreover a social explanatory variable, the
rate of detectability of delinquents, 13 also added to the
model to assess if better living conditions, in terms of
social security, might have an impact on the migration
process. Global research findings establish a substantial
influence of economic factors on migration flows. The
estimated coefficients for the unemployment rate and GDP
per capita emphasise this aspect (Table 1, in which
parameter coefficients are expressed in logarithms).

Secondly, a further purpose of this application
concerns the formulation of two localised origin specific
constrained models, to capture regionally different
sensitivities of explanatory variables, exploiting the same
principle of GWR. They rely on a different specification of
weighting functions. In one of them, the weights are
defined according to a common used Gaussian distance
decay based function (Eq. 7); in the other, our proposed
weighting function combining the geographical space
and the strength of connection (Eq. 8) is adopted. The
best way for understanding the geographical variations
of parameters may be to build maps of local parameters.
However, owing to the volume of output of local
estimates, it 1s not possible to display all maps for each
combination of origins and destinations. An informal
but convenient indication of the extent of spatial
non-stationarity in the local parameter estimates, has
been obtained by assessing if the range of local
estimates between the inter-quartile range is greater than
that of 2 standard errors of the global estimates, as
suggested in Fotheringham et al. (2002).

The main empirical findings, achieved by the
calibration of the two localised origin-specific-constrained
models, are summarised i Table 2, m which we set out for
each sending region the median, the upper and lower
quartiles and the minimum and maximum values of the
estimated parameters, got from the estimates over all
destination provinces. In Table 2, we do not display the
distance decay exponent, whose impact 1s stable across
the study region. The analysis of the overall results
shows local anomalies of parameters drifts in some region,
particularly in the area of capital Warszawa (Mazowieckie
voidvodship). Particular attention 1s peid to the main
economic the
unemployment rate and per capita GDP. Regarding that, it

determinants of migration flows:

1s interesting to point out that while the global coefficient

Table 1: Global origin-constrained model coefficients

Model Value SE t-value p-value
LOG POP 0.736 0.14203 5.185 0.000
LOG GDP T.460 0.17836 41.828 0.000
LOG UNEMP -4.860 0.04856 -100.102 0.000
LOG DELIQ -4.754 0.04817 -98.695 0.000
LOG DIST -0.002 0.00002 -123.615 0.000
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Table 2: Summary statistics of estimated parameters for localised origin-specific—constrained models with different weighting fimctions

POP GDP UNEMP DELIQ
Strength-  Exponential Strength- Exponential Strength-  Exponential  Strength-  Exponential
Voidvodships connection distance-decay commection distance-decay connection distance decay connection distance-decay
(provinces) function finction function function function finction function  function
Lodzkie Minimum -10.160 -11.656 0.900 0.357 -11.390 -12.440 -10.910 -13.965
Lwr Quartile -8.230 -7.759 20,173 18.644 -10.305 -11.901 -9.970 -10.309
Median -7.505 -6.019 22.900 21.60 -10.165 -11.340 -9.630 -9.565
Upr Quartile -5.670 -3.85 23.553 24.647 -9.688 -10.999 -9.150 -9.223
Maximum 3.680 4.856 25.400 28527 -3.580 -3.288 -6.270 -5.437
Mazowieckie Minimum 11.310 8012 -33.940 -28.167 7.540 3.529 0.440 0113
Lwr Quartile 12.358 12.031 -22.463 -25.534 8430 9203 2.595 2.780
Median 13.875 14.337 -20.085 -20.818 8.810 9711 2.890 3.228
Upr Quartile 15133 17.528 -17.630 -17.552 10.485 10.628 3.363 3.702
Maximum 23,900 18.897 -16.070 -9.262 13.000 12,122 3.940 7.843
Malopolskie Minimum -4.020 -6.331 -10.760 -14.168 -6.860 -7.737 -7.070 -9.130
Lwr Quartile 3.888 6.556 -0.025 -3.004 -4.495 -2.923 -4.228 -3.376
Median 4.890 6.849 1.550 -1.518 -4.155 -2.310 -4.045 -3.205
Upr Quartile 6.178 8117 2.945 -1.051 -3.973 -2.189 -3.538 -2.981
Maximum 12.270 14.533 13.610 17.475 3.500 4.654 -0.840 2.652
Slasgkie Minimum -8.840 -14.306 -3.790 -12.008 -4.690 -10.162 -4.230 -3.490
Lwr Quartile 2.873 5176 0.968 -1.174 -4.053 -4.990 -2.523 -1.054
Median 3.075 5432 2.655 -0.198 -3.825 -4.840 -2.385 -0.682
Upr Quartile 4,325 6.821 2.965 0.070 -3.763 -4.766 -1.953 -0.567
Maximum 8.730 15.605 17.140 23.703 -1.180 -2.694 -1.180 2.926
Lubelskie Minimum -9.630 -17.951 -25.790 -19.551 -18.740 -20.025 -12.150 -13.723
Lwr Quartile -8.108 -8.662 21.043 21.846 -14.595 -16.918 -9.653 -8.059
Median -7.695 -7.244 24.420 24,406 -14.075 -15.987 -9.215 -7.786
Upr Quartile -5.228 -5.092 24.978 25742 -13.068 -14.798 -8.395 -7.156
Maximum 25.120 15.964 28.500 37.986 -7.030 -2.943 2450 2.635
Podkarpackie Minimum -0.480 9476 -14.370 -34.000 -10.840 -11.801 -10.740 -21.927
Lwr Quartile 11.930 20,027 -12.565 -19.960 -7.050 -6.145 -8.385 -10.100
Median 15.975 23,561 -9.045 -18406 -6.370 -5.775 -7.550 -8379
Upr Quartile 19.210 25978 -3.778 -12.566 -6.095 -4.783 -7.188 -7.476
Maximum 21.880 46.324 14.570 28.074 -4.450 -3.227 -4.470 -5.777
Swietokrzyskie Minimum -17.930 -2.794 -20.250 -21.903 -14.240 -23.827 -10.080 -10.400
Lwr Quartile -3.045 4.536 -11.858 -13.555 -12.103 -13.412 -9.085 -8416
Median 6.725 13.210 -1.835 -2.795 -11.030 -12.768 -7.760 -7.390
Upr Quartile 21.573 22,981 14.890 98462 -9.663 -11.651 -6.980 -6.809
Maximum 29.600 30.675 16.880 19.684 -8.820 -9.524 -4.050 -5.706
Podlaskie Minimum -20.560 -16.696 -1.480 -66.984 -16.750 -20.531 -16.030 -17.978
Lwr Quartile -5.953 -6.475 15.948 19.601 -5.050 -2.261 -10.393 -12.609
Median -5.255 -5.628 17.700 20.041 -4.690 -1.922 -10.155 -12.256
Upr Quartile -4.138 -5.392 19.160 21.077 -4.048 -1.254 -9.858 -11.873
Maximum -3.230 34.588 41.020 37117 17.400 42.644 10.010 6.263
Wielkopolskie Minimum -16.990 -30.369 0.480 1.508 -3.880 -3.573 -13.850 -14.736
Lwr Quartile -13.315 -15.731 18.393 18.984 0.560 2.672 -8.925 -7.208
Median -10.850 -14.431 21.605 22.830 0.860 3.210 -8.250 -6.741
Upr Quartile -8.243 -11.196 24.705 25018 1.148 3.556 -7.658 -6.429
Maximum 14.310 1.253 28.540 45315 10.060 12,648 -3.500 -2.689
Zachodniopomorskie Minimum -0.840 -10.496 -3.430 -36.157 -10.650 -14.705 -3.810 -2.682
Lwr Quartile 5.743 0.012 -1.148 -0.560 -8.758 -11.820 -2.028 13.502
Median 7.080 1.883 0.050 0.898 -8.340 -11.102 -1.750 14.172
Upr Quartile 7.875 2.779 1.428 4.987 -8.108 -10.009 -1.495 14.383
Maximum 10.390 32444 8.890 15.596 -5.730 -4.783 1.030 15.805
Lubuskie Minimum -3.340 -11.015 -32.530 -40.504 -15.260 -22.631 -13.850 -21.750
Lwr Quartile 20.225 -1.273 -26.838 -12.367 -6.835 -14.492 -9.618 -18.708
Median 24.005 15.989 -18.190 4.514 -5.420 -11.970 -8.220 -15.832
Upr Quartile 30.355 26.092 -13.158 20469 -3.075 -8.375 -7.488 -13.169
Maximum 39,300 45436 25.710 47.769 5.530 -1.999 -3.600 -9.713
Dolnoslaskie Minimum -12.299 -10.754 7.063 -7.365 -9.665 -17.062 -3.565 -0.255
Lwr Quartile -7.778 -1.666 10.843 4.176 -7.823 -9.293 1.365 5.945
Median -6.484 -0.882 13.328 5.273 -7.060 -9.096 1.532 6.153
Upr Quartile -5.613 -0.127 15.945 6.605 -6.780 -8.449 2.075 6.3%96
Maximum -0.662 11.804 20.640 17.970 -2.139 -4.019 4.957 10,135
Opolskie Minimum -6.490 -1.891 -17.330 -26.401 -11.800 -6.378 -16.290 -15.986
Lwr Quartile 15.973 18.849 -13.443 -21.323 -1.295 -3.379 -10.805 -12.213
Median 18.045 22714 -12.250 -16.958 -1.020 -2.297 -10.230 -11.004
Upr Quartile 19.008 26197 -8.645 -12.796 -0.870 0.017 -9.958 -9.684
Maximum 22.850 30.298 28.550 11479 2.030 3.545 -6.200 -1.486

635
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Table 2: Continued

POP GDP UNEMP DELIQ
Strength-  Exponential Strength-  Exponential Strength-  Exponential  Strength-  Exponential
Voidvodships connection  distance-decay connection  distance-decay connection distance decay connection distance-decay
(provinces) function finction function function function finction function  function
Kujawsko-Pomorskie Minimum -2.510 -8.202 0.530 -3.462 -9.880 -13.606 -6.130 -4.133
Lwr Quartile -0.268 1.087 5.323 -0.209 -8.275 -8.774 -4.610 -1.070
Median 2.235 5.329 6.860 1.651 -7.890 -8.351 -3.655 -0.213
Upr Quartile 3.673 6.887 10.145 7.605 -7.473 -7.882 -3.240 0.123
Maximum 7.270 9413 12.630 23.720 -5.710 -5.629 -2.340 0.710
Warminsko- Minimum -9.150 -17.136 10.320 15.177 -10.440 -12.412 -7.930 -9.324
Mazurskie Lwr Quartile -5.943 -11.739 14.448 17.326 -7.023 -5.886 -6.338 -6.653
Median -4.105 -8.218 15.070 19.978 -6.750 -5.699 -6.040 -5.457
Upr Quartile -3.443 -6.578 17.215 28120 -6.478 -4.927 -5.825 -5.164
Maximum -1.570 -4.309 24.050 30475 -2.920 -3.862 -3.190 1.176
Pomorskie Minimum -3.350 -4.538 -31.290 -40.797 -4.390 -1.563 -9.340 -5.655
Lwr Quartile -0.753 5434 3.170 -7.763 -2.640 0.579 -4.728 -0.605
Median 0.510 3291 5.715 -5.740 -2.008 1.752 -4.090 0.270
Upr Quartile 2.495 9.562 8.055 -2.455 -1.753 1.891 -3.798 0.778
Maximum 20.040 25.202 10.170 9.865 14.770 18.910 2.710 6.434
(€

—e— Strenght of connection weighting function —s=— Gassian distance-decay function 1
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Fig. 1. Measures of predictive performance of localised specific origin-constrained models with different weighting

functions

signs confirm that migrants are willing to move towards
provinces characterised by low unemployment rate and
high per capita GDP, the local estimates shows some
counter-intuitive results. It should be noted that the
geographical parameter drifts are strongly dependent on
the combinations of origins and destinations. This makes
very difficult to deeply recogmze the determinants of
people movements. Finally, to further illustrate the effect
of our specification of the weighting function on the
models ability m replicating the observed flow data, we
calculate and compare two different goodness-of-fit
statistics (SMRE and 1G), as defined here. The potential
advantages arising from the introduction of the function
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of strength of comnection m the weighting scheme, are
evaluated by the comparison with the following different
Gaussian weighting functions:

W,y = exp(=d,’ /h%)
and

Wiy = ‘fexp(djk /h)

indicated in Fig. 1 as Gaussian distance decay function 1
and Gaussian distance decay function 2, respectively.
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The parameters of coefficients, estimated in each of
the destination provinces and for each of the sending
provinces allow us to obtain 256 matrices of predicted
flows to be compared with the observed flows among
Polish voivodeships. The results, obtained from the local
spatial mteraction models under study, indicate a better
prediction power for the model with the new weighting
function, through which we constantly observe smaller
values of both the considered Standardised Root Mean
Square Hrror and Information Gain statistics (Fig. 1). It
unplies that local spatial interaction model fits the data
better if the spatial-strength of connection weighting
function 1s used.

CONCLUSIONS

Although, applications of GWR can be found in a
variety of disciplines, there are few efforts to document
local variation of spatial mteraction models. In this study,
exploiting the same principle of GWR, we obtained the
parameters drifts for localised origin-specific-constramed
models. In the GWR approach, there are many options
regarding the specification of the weighting function.
Currently, the geographical weight designates the degree
of spatial separation between the focal point and its
neighbours. In this study, we recommend a diverse
weighting function which includes both the geographical
distance and the strength of commection between two
regions, properly specified. Migration flows among Polish
provinces are used as an illustrative application of the
suggested approach. The obtained localised parameters
exhibit a high degree of variability over space and
demonstrate complex spatial patterns of the variables. We
expected that the introduction in the weighting scheme of
“the strength of connection” between two specific
localisations could improve the prediction power of the
In this regard, we compared the overall
performance of our localised spatial interaction model, in

model.

terms of prediction errors, with localised spatial
mteraction models where the weighting functions are
taken in the traditional Gaussian distance-decay form. The
lower values of both goodness-of-fit statistics employed
represent empirical evidence that the mtroduction of new
weighting function has significantly improved the model’s
ability m replicating the known matrix flows. In some way,
the improvements of fitting can be regarded as an
altemative way to detect the presence of spatial
relationship, validating the usefulness of our proposed
approach for handling varying parameters estimates of

spatial interaction models.
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