Influence of Nano clay/Phenol Formaldehyde Resin on Wood Polymer Nanocomposites

Md. Rezaur Rahman, Sinin Hamdan, Md. Saiful Islam and Abu Saleh Ahmed
Faculty of Engineering, Universiti Malaysia Sarawak,
94300 Kota Samarahan, Sarawak, Malaysia

Abstract: Selected tropical wood specie was low dense soft wood and it is abundantly available in Borneo Island. This specie is not suitable for construction materials due to their low physical and mechanical properties. In order to overcome this problem the wood specie were impregnate by Nano clay/PF resin system. Raw wood specimens were then placed into an impregnation chamber, in which there was no contact between samples and they were covered completely by Nano clay/PF mixtures. The system was evacuated to 60 mmHg for 30 min. After that, compressed air was applied to the system and maintained at a pressure of 0.52 MPa for 30 min then released. The excess chemicals wiped off the samples. FT-IR spectra indicate the decrease wave number of the peak, ascribed to C-O stretch of C-O-H in starch at 1317 cm\(^{-1}\) and 1222 cm\(^{-1}\) and C-O stretch of C-O-C in starch at 1027 cm\(^{-1}\) confirmed the impregnation of Nano clay/PF wood sample due to the fact that plasticizer could form intense H-bonding interaction with the hydroxyl groups. The MOE and MOR of WPNC were significantly increased compared with raw wood. The Young’s modulus of Eugenia sp. was significantly different between raw wood and WPNC. The XRD patterns of WPNC indicate that the crystallinity increases at the amorphous region due to the monomer loading. The SEM micrograph of WPNC clearly shows the void space was filled by the monomer and removes the waxy substance.

Key words: Modulus of elasticity, modulus of rupture, scanning electron microscopy analysis, X-ray diffraction analysis

INTRODUCTION

Organic or inorganic fillers have been used as reinforcements in polymers. The up to date nanoparticles has attracted much attention in manufacturing polymeric nanocomposites using various nanoparticles as reinforcements. The polymeric nanocomposites showed their different properties based on the experimental results. Some researcher found the improvement of the matrix properties (Lee et al., 2011; Hamzah et al., 2010; Ratnasingam and Ioras, 2010; Ramasamy and Ratnasingam, 2010; Adehbar et al., 2001; Yasmin et al., 2003; Kinloch et al., 2003) while others reported unfavorable effect (Haggenmueller et al., 2006; Zilg et al., 1999, 2000) due to the additions of nanoparticles. Moreover, the effect of nanofillers is established its necessity because of its unique properties and reliable method of dispersing nanoparticles is still lacking.

In order to overcome this problem nanoparticles break these bunches and established the shear mixing methods. (Nazeran et al., 2011a; H’ng et al., 2011; Yasmin et al., 2003), mechanical mixing (Shah and Paul, 2004), in situ polymerization (Haggenmueller et al., 2006; Nazerian et al., 2011b, Farrokhpour et al., 2010, Ratnasingam et al., 2010a, b) and impregnation have been used to produce nanocomposites. Researchers have been reporting improved mechanical properties of nanocomposites fabricated via the impregnated method. However, with few exceptions, the properties of the resulting nanocomposites tend to go down after reaching the maximum at a particle loading of about 3-5 wt.% or less (Rodgers et al., 2005; Choi et al., 2005; Zheng et al., 2005).

Some articles have been published on silica/epoxy nanocomposites fabricated from organosilicasol (colloidal silica in organic solvent) (Adehbar et al., 2001; Kinloch et al., 2003; Uddin and Sun, 2008). Uddin and Sun (2008) obtained 40% improvement in matrix compressive modulus with 15 wt.% silica nanoparticle loading. By using this nanoparticle-enhanced matrix, glass fiber composites gained 60-80% in longitudinal compressive strength for different fiber volume fractions. Kinloch et al. (2003) reported the greatly improved fracture behavior of an epoxy adhesive with the inclusion of both silica nanoparticles and rubber composites. In this study Nano clay/Phenol Formaldehyde resin system were used as a reinforcement matrix to produce the WPNC.

Corresponding Author: Md. Rezaur Rahman, Faculty of Engineering, Universiti Malaysia Sarawak,
94300 Kota Samarahan, Sarawak, Malaysia Tel: +6082 583317 Fax: +6082 583410 1481
MATERIALS AND METHODS

Materials: The softwoods Eugenia sp., Artocarpus rigidus, Artocarpus elasticus and Xylophia sp. and the hardwood Koompasria malaccensis were used for this study since June 2011 to end of December 2011. Chemicals used to impregnate these wood species were Nanoclay nanomer® 1.30E, Montmorillonite (MMT) (Southern Clay Products, Inc USA) and Phenol Formaldehyde resin (PF) (Merck; Germany). The purity grade of the chemicals were 99%.

Preparation of impregnation solutions: The impregnation solutions were prepared by adding 1% layered aluminosilicate nanofiller into the low viscosity phenol formaldehyde resin at a mixing speed of 2050 rpm for 20 min then nanoclays were mixed with the PF resin prepolymer to form impregnation solutions that were subsequently used to impregnate the wood species.

Manufacturing of wood polymer nanocomposites: Raw wood specimens were oven dried to constant weight at 103°C for 24 h. They were then placed into an impregnation chamber, in which there was no contact between samples and they were covered completely by nanoclay/PF mixtures. The system was evacuated to 60 mm Hg for 30 min. After that, compressed air was applied to the system and maintained at a pressure of 0.52 MPa for 30 min then released. The excess chemicals were wiped off the samples. Specimens were weighted and dried 24 h by air circulation, followed by oven drying at 90°C for 24 h. The excess polymers were then removed from the surface.

FT-IR spectroscopy analysis: The infrared spectra of the raw woods and WPC were recorded on a Shimadzu Fourier Transform Infrared Spectroscopy (FTIR) 81001 Spectrophotometer. The transmittance range of the scan was 370 to 4000 cm⁻¹.

The free-free flexural vibration testing: Determination of the dynamic Young’s modulus (E_d) was carried out using the free-free flexural vibration testing system. The specimen was held with AA thread according to the first mode of vibration. The specimen with an iron plate bonded at one end was set facing the electromagnet driver and a microphone was placed at the centre below the specimen. The frequency was varied in order to achieve a resonant or natural frequency. The E_d was calculated from the resonant frequency by using the following equation:

\[E_d = \frac{4\pi^2 f^4 A_0}{L (\mu_2)^2} \]

where, I is bd⁴/12, d is beam depth, b is beam width, l is beam length, f is natural frequency of the specimen, \(\rho \) is density, A is cross sectional area and n = 1 is the first mode of vibration, where \(m_1 = 4.730 \).

Determination of static Young’s modulus (E_s), modulus of elasticity (MOE) and modulus of rupture (MOR):

Determination of E_s, MOE and MOR was carried out according to ASTM-D-143 (2006). A Shimadzu Universal Testing Machine having a loading capacity of 300 kN was used for the test with the cross head speed of 2 mm/min. E_s was measured using the uniaxial compression test. The MOE and MOR were measured using the three point bending method and were calculated using the following equations, respectively:

\[\text{MOE} = \frac{L^4m}{4bd^4} \]

\[\text{MOR} = \frac{1.5PL}{bh^2} \]

Where:

L = Span length of sample, 180 mm
b = Width of sample, 20 mm
d = Thickness of sample, 20 mm
m = Slope of the tangent to the initial line of the force displacement curve
P = The maximum breaking load
h = Depth of the beam

Scanning electron microscopy analysis (SEM): The specimens were first fixed with Karnovsky’s fixative and then taken through a graded alcohol dehydration series. Once dehydrated, the specimen was coated with a thin layer of gold before being viewed on the Scanning Electron Microscope (JSM-6701F) supplied by JEOL Company Limited, Japan. The micrographs, taken at a magnification of 150X.

X-ray diffraction analysis (XRD): XRD analysis for raw wood and Wood Polymer Composites (WPC) were performed with a Rigaku diffractometer (CuKα radiation, \(\lambda = 0.1546 \) nm) running at 40 kV and 30 mA.

RESULTS AND DISCUSSION

Fourier transforms infrared (FTIR) spectroscopy analysis: FTIR spectra of raw wood and WPNC are shown in Fig. 1. The spectra were separated in two regions, namely: the OH stretching vibrations in 4000-2700 cm⁻¹ region and fingerprint region in 1800-400 cm⁻¹.

Fig. 1(a-b): IR spectrum of (a) Raw wood and (b) WPNC region. The stretching band of OH group and C-H group was 3300-4000 cm\(^{-1}\) and 2800-3000 cm\(^{-1}\), respectively. The band region from 1600 to 1750 cm\(^{-1}\) shown the superposition with sharp and discrete absorptions (Owen and Thomas, 1989). The absorption band 1508 cm\(^{-1}\) is caused by lignin and the absorption located at 1735 cm\(^{-1}\) is caused by hemicelluloses. This indicates the C = O stretch in non-conjugated ketones, carboxyls and ester groups (Owen and Thomas, 1989). The region between 1800 and 1100 cm\(^{-1}\) comprises bands assigned to the main components from wood: cellulose, hemicelluloses and lignin. Clear difference can be detected in the infrared spectra, both in the different absorbance values and shapes of the bands and their location. The less xylan content in softwood is evidenced by a carbonyl band at 1735 cm\(^{-1}\), for nanoclay/PF modified wood, this being shifted to a lower wave number value (1591 cm\(^{-1}\)). On the other hand, the decrease wave number of the peak, ascribed to C-O stretch of C-O-H in starch at 1317 and 1222 cm\(^{-1}\) and C-O stretch of C-O-C in starch at 1027 cm\(^{-1}\) confirmed the impregnation of nanoclay/PF wood sample due to the fact that plasticizer could form intense H-bonding interaction with the hydroxyl groups.

Dynamic Young’s modulus measurement: The dynamic Young’s modulus of the raw wood and WPNC, from the free-free flexural vibration testing system is shown in Fig. 2. Ten specimens were used for each species. The nanofiller with phenol formaldehyde monomer system increased the Young’s modulus, as seen in all species which was according to our previous work (Hamdan et al., 2010). After monomer impregnation the Young’s modulus of Eugenia sp., Xylopia sp., Artocarpus rigidus and Artocarpus elasticus, were significantly higher than that of raw one. On the other hand the Young’s modulus of Koompassia malaccensis was slightly higher due to their hard cell wall (due to the nanofiller effect on all wood species).
Modulus of Elasticity (MOE) and modulus of rupture (MOR) measurement: The MOE and MOR of raw wood and WPNC are shown in Fig. 3 and 4, respectively. The nanofiller phenol formaldehyde monomer system impregnation on the discerning wood species was investigated. The increment in MOE of the Eugenia sp. and Xylopia sp. were highest followed by, Artocarpus rigidus, Artocarpus elasticus and Koompassia malaccensis, respectively. WPNC yielded higher MOE compared to the raw wood because of the impact of nanofiller on wood species which is in accordance with other researchers (Cai et al., 2007, 2008).

From Fig. 3, the MOE of the Eugenia sp., Xylopia sp., Artocarpus elasticus and Artocarpus rigidus were significantly higher compared with raw wood. However in Koompassia malaccensis, (hardwood) there was no significant effect of nanomer impregnation but increment in MOE was slightly higher than that of our previous work.

Static Young’s modulus (E,) measurement: The Static Young’s modulus was determined from 10 repetitions, as summarized in Fig. 5. The highest increment of E, value was observed in Eugenia sp. followed by Artocarpus rigidus, Artocarpus elasticus, Xylopia sp. and Koompassia malaccensis, respectively. Figure 5 indicates that, the increment of E, between raw wood and WPNC for Eugenia sp. was significantly different. The increment of E, in WPNC compared to raw wood was also reported by different researchers (Cai et al., 2007, 2008; Rahman et al., 2010). The nanofiller/phenol formaldehyde not only plasticized on the wood cell walls but also deeply increasing their lateral stability.
Fig. 5: Static Young’s modulus of raw wood and WPNC

XRD analysis: Figure 6 presents the results of XRD for raw wood and WPNC. The spectrum corresponding to the raw wood and WPNC shows diffraction peaks at the following 2θ angles: 17°, 22.5°, and 35° which correspond to the cellulose crystallographic planes 101, 002 and 040, respectively (Mulinari et al., 2010). The position of these peaks did not change which indicates that the structure of cellulose did not change in comparison with the raw wood. It is observed that the WPNC exhibited another five broad 2θ peaks at 43.74°, 49.21°, 51.13°, 55.65° and 72.87° which are due to increasing polymerization in the amorphous region.

These values can be attributed to modification of the wood by the nanofiller/phenol-formaldehyde prepolymer. The reason may be that the prepolymer has been injected into the lumen of the wood cell. The crosslinking reaction occurred between the groups of prepolymer and the surface hydroxyl (OH) groups of wood. A quasi-crystalline form was generated in the XRD, but actually it may not represent an increase in the crystallinity of cellulose (Wu et al., 2004).

Scanning electron microscopy (SEM) analysis: Scanning Electron Micrographs (SEM) of raw wood and WPNC are shown in Fig. 7. The SEM micrographs showed that the raw wood surfaces were covered with an uneven layer with a number of void/hole spaces, while the treated wood surfaces were smooth (Fig. 7a, b). The smooth surface may be caused by the good penetration of the monomer mixture to the cell wall and vessels of the wood (Rahman et al., 2010). The SEM analysis indicated that the prepolymer was impregnated into cell wall and cell cavities of wood.

Fig. 6(a-b): X-ray diffraction of (a) Raw wood and (b) WPNC

Fig. 7(a-b): Scanning electron microscopy of (a) Raw wood and (b) WPNC
CONCLUSION

In the present study nanofiller/phenol formaldehyde WPC were investigated. FT-IR spectra indicate the decrease wave number of the peak, ascribed to C=O stretch of C-O-H in starch at 1317 cm\(^{-1}\) and 1222 cm\(^{-1}\), and C-O stretch of C=O-C in starch at 1027 cm\(^{-1}\) confirmed the impregnation of nanoclay/PF wood sample due to the fact that plasticizer could form intense H-bonding interaction with the hydroxyl groups. The stiffness of the WPNC was significantly increased compared with raw wood. The MOE and MOR of WPNC were significantly increased for Eugenia sp., Xylophia sp., Artocarpus Rigidus and Artocarpus Elasticus respectively. The Young’s modulus of Eugenia sp. was significantly different between raw wood and WPNC. The XRD patterns of WPNC indicate that the crystallinity increases at the amorphous region due to monomer loading. The SEM micrograph of WPNC clearly shows the void space was filled by the monomer and removes the waxy substance. It can be concluded that nanofiller/phenol formaldehyde was significantly effective on Eugenia sp. followed by Xylophia sp., Artocarpus Rigidus and Artocarpus Elasticus wood species, respectively.

REFERENCES

