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Abstract: Carbon dioxide (CO,) which exists in natural gas is one of the undesirable impurities that can reduce
the caloric power of the natural gas. The implications of CO, on the economic loss of the natural gas processing
have provoked the development of CO, separation technology. In the past decades, membrane technology has
emerged as an environmental friendly, economic feasible and easy-operating method in CO, removal. ZIFs
membranes presented to be relatively new materials, which possessed hugh stability and good performance
CQ, separation under harsh condition. The tunability of the pore apertures and plentiful diversity of the
frameworks associated with ZIFs membranes provide massive potential for the researchers to enhance the
properties of ZIFs membranes in CO, separation. This review attempts to summarize the current performance
of the ZIFs membrane in CO,/CH, separation process, considering CH, as the main constitutions in natural gas.
Extensive study on molecular structures, membrane formation and separation mechanism is emphasized on
ZIF-8 membranes owing to their exceptionally high CO, permeability. To this end, separation performance
mvolved in ZIF-8 membrane 1s discussed, which affected by the synthesis method, moelar composition of the
growth solution and modification of the supports.
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INTRODUCTION

In the past decades, natural gas has played an
umportant role as fuel used mn mdustrial, agricultural and
transportation sectors. It 18 a complex gas mixture
containing different kinds of gaseous components, with
methane (CH,) as the main constitution and other
impurities such as carbon dioxide (CO,), hydrogen
sulphide (H,3) and water (H,O) (Zhu ef al., 2006,
Scholes et al, 2012). Recently, composition of CO,
presence in natural gas as high as 70% has been reported
(Lin et al., 2006). The presence of lhugh concentration of
CO, m natural gas can corrode the pipelines mainly due to
its acidic behaviour and reduce the caloric power of the
natural gas (Zhu et al., 2006). Therefore, separation of CO,
from CH, n natural gas processing 1s an essential steps in
order to lessen the economic losses (Drioli and Barbier,
2011).

Membrane technologies has drawn unprecedented
attention of many researchers for CO, gas separation
owing to its low energy consumption (Zomoza et al,
2013), compact and simple design (Zhu et al, 2006)
environmental friendly (Lau et «l, 2012), high CH,

recovery (Basu et al, 2011), smaller capital cost
(Chew et al., 2011), ease of operation and easy to scaled-
up (Venna, 2010). Among the different types of the
existing membranes, Zeolite Imidazolate Frameworks
(ZIFs) membrane as the sub-category of metal-organic
framework (MOF) membrane has emerged as a relatively
new membrane material for CO, separation. This was
mainly attributed to its remarkable properties such as
exceptionally high thermal and chemical stability
(Bux et al., 2009, Fairen-Jimenez et al., 2011, Xu et al,
2011; Hu et al., 2012), variety framework diversity with
adjustable chemical functionality (Assfour et af., 2010,
Fairen-Jimenez et af., 2011), high adsorption capacities,
high specific swrface areas and high pore volumes
(Rosi et al, 2003).

The present review attempts to summarize the current
performance of the ZIFs membrane in CO,/CH, separation.
Beginning with the brief introduction of ZIF and ZIFs
membranes, reported literature on the performance among
the ZIFs membranes m CO,/CH, separation were
summarized. In this regards, Z1F-8 membrane was chosen
for extensive study due to its characteristics which are
beneficial for CO,/CH, separation. Subsecuently, the
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molecular structures and the mechanisms involved in
membrane formation and CO,/CH, separation of ZIF-8
were presented. Furthermore, the effect of the synthesis
conditions on the formation of ZIF-8 membranes mcluding
(1) synthesis method, (2) molar composition of the growth
solution and (3) modification of the supports, as well as
the separation performance of the resultant membranes in
CO,/CH, were discussed. Finally, concluding remarks and
future directions were suggested.

ZEOLITE IMIDAZOLATE
FRAMEWORKS (ZIFS)

ZIFs presented in formula M(Im),, where M is the
transition metal (Zn* or Co™) and Im is the imidazolate
linker. The transition metal cations are comnected by
imidazolate anions through N (nitrogen) atoms into
tetrahedral frameworks, subtend at an angle of 145° at
M-Im-M center that resembling the zeolite topologies
(Zhou et al., 2008, Cravillon et al., 2009; McCarthy et al.,
2010, Amrouche et al, 2011, Diaz er af., 2011;
Huang et al., 2011, Morris ef al., 2012). The pores of ZIFs
are formed by 4, 6, 8 and 12-membered rings of the ZnN,
and CoN, clusters (Venna ef al., 2010). The plentiful
frameworks diversity and tunable pore apertures of the
ZIFs promise their potential in gas separation.

ZEOLITE IMIDAZOLATE FRAMEWORK-8 (Z1I7-8)
MEMBRANES

Introduction to ZIF-8 membranes: ZIFs crystals that grow
continuously on porous support will form thin layer of
membrane eventually. The ZIFs membranes exhibit
different performance in CO,/CH, separation as shown in
Table 1 (Venna and Carreon, 2009, Huang et al., 2010,
Lietal, 2010, Liuetal, 2011, Zhang et al., 2013). Based
on the reported results shown in Table 1, ZIF-8
membranes  showed  the highest CO, permeance
(~240x10"mol/m’sPa) and CO,/CH, selectivity (~7) as
compared to the other types of ZIFs membranes, such as
ZIF-7, -69, -90 and -9-67. Apart from its high CO,
permeance and CO,/CH, selectivity, ZIF-8 membranes
show hydrophobic characteristics and resist to some
aromatic hydrocarbon such as benzene (Venna and

Table 1: CO, separation performance of different types of ZIFs membranes

Carreon, 2009) organic solvents and boiling allaline water
(Park et al., 2006). In addition, ZIF-8 membranes exhibit
high thermal stability by sustaimng the temperature up to
400°C 1 air and 350°C m N, (Madhusoodana et al., 2006).
The outstanding properties showed by ZIF-8 membranes
reveal their advantages over other type of membranes in
gas separation application under harsh condition.

Molecular structures of ZIF-8: 7ZIF-8 (Zn(melm),,
melm = Z-methylimidazole ) possesses large cavities with
the size of 11.6 A, encompassed by six-membered ring
window forming small apertures of 3.4 A (Venna et al.,
2010; Fairen-Timenez ef al., 2011, Xu et al, 2011). It is
classified under cubic space group I-43 m with the Zn*
1on comnected to the N atoms of melm groups through
coordination bond, forming sodalite (SOD) zeolite
topology (Hu et al., 2012). Figure 1 shows the three-
dimensional structure of ZIF-8 in cubic unit cell at <111

Fig. 1. Three-dimensional structure of ZIF-8 in cubic umt
cell at <111> plane, showing large cavity
(sphere region) with size 11.6A and small
apertures (six-membered ring window) with size
344, Adapted from (Markov, 2003; Park ef af,,
2006)

CO, permeance

(107" mol m—3s Pa™!)  CO,/CH, selectivity References

Types of ZIFs membranes Feed pressure (kPa) Temperature (K)
ZIF-8 139.5 298
ZIF-7 100.0 493
ZIF-69 101.3 298
ZIF-90 101.3 473
ZIF-9-67 N/A 298

240 T Venna and Carreon (2009)
0.035 1.13%# Lietd. (2010)

1.0 4.6* Liu et . (2011)

0.348 2.22%% Huang et af. (2010)

15.8 0.3%% Zhang et al. (2013)

*C0O,:CH, = 50:50, **Ideal selectivity
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plane (Marlcov, 2003; Park et al., 2006). Small apertures
(~3.4A size) are presented by the six-membered rings
window and large cavity (~11.6A) is presented by the
sphere region.

Mechanism for ZIF-8 membrane formation: ZIF-8
membrane 1s formed through the continuous nucleation
and crystallization process of ZIF-8 crystals on the
porous supports. Initially, building unit of ZIF-8 emerges
when Zn"" cation attacks the melm anion which is rich in
electron. Nucleation process happens when each of the
building umt of ZIF-8 1s inked to the other building units
through N atoms forming ZnN, clusters, which comnect
together and form the unit cell of ZTF-8 with the window
cages. After nucleation process, ZIF-8 starts to grow
through the collision and particle-monomer attachment
process, indicating the occurrence of crystallization. The
porous supports used for synthesizing ZIF-8 membrane
to date including alumina (Venna and Carreon, 2009,
Bux et al, 2011; Taoc et ai., 2013), titania (Bux ef al., 2009)
and Y37, ceramic fiber (Pan et al, 2012). Those selected
porous supports possess inert characteristics and did not
mfluence the growth of the membrane. Comprehensive
schematic diagram on the ZIF-8 membrane formation 1is
presented in Fig. 2 (Banerjee et al., 2008; Friscic et al.,
2013).

Mechanism for CO,/CH, gas separation in ZIF-8
membranes: In ZTF-8 membranes, CO, molecules permeate
over the membrane through adsorption-desorption and
diffusion mechamsm (Chmelik et al., 2012) as displayed in
Fig. 3. Furst, CO, molecules are selectively attracted by
ZIF-8 membrane. Then, the molecules will diffuse through
the matrix of the membrane owing to the gradient of
chemical potential based on Maxwell-Stefan diffusion
theory (Kapteyn et al., 2000). Finally, the CO, molecules
are desorbed from the membrane to achieve equilibrium
with the surrounding. Schematic diagram of the mass
transfer of CO, molecules through ZIF-8 membrane in

Table 2: Comparison for ZIF-8 membranes synthesized at different parameters

steady state is shown in Fig. 4 (Bux, 2011). Gas phase A
and B existed at the feed and permeate sides of the
membrane corresponding to constant pressure and
respectively. The adsorption and desorption of CO,
molecules on both sides of membrane at different pressure
resulted in different concentration and chemical potentials
of the molecules.

CO, molecules are preferentially adsorbed by ZIF-8 as
compared to CH, molecules. This was due to the presence
of the electrostatic potential (ESP) at the three methyl
rings and the six imidazole rings of ZIF-8 (Luet af.,
2012). Exastence of ESP favours the attraction of CO,
molecules with larger quadrupolar moment (13.4x107"°
Cm?) as compared to CH, molecules, which are non-polar
with the absence of quadrupolar moment
(D' Alessandro ef af., 2010). Besides, the diffusivity of CO,
is larger than CH, under the same amount of molecules
loading. This was due to the larger size of CH, molecules
(~3.8A) than CO, molecules (-3.3 A) that contributed to
higher steric hindrance during the interaction with the
window cage of ZIF-8 (~3.44).

Effect of synthesis conditions on the formation and
CO./CH, gas separation of ZIF-8 membranes: There are
several factors affecting the quality of ZIF-8 membranes
formed such as the synthesis method, molar composition
of the synthetic solution and modification of the supports
through the seeding methods. Correlation between those
factors and the gas separation performance (CO,/CH,
selectivity) of the membranes was compared and listed
in Table 2 (Bux et al, 2009; Venna and Carreon, 2009,
Bux et al., 2011, Pan et al., 2012). ZIF-8 membrane which
showed highest selectivity was reported by Venna and
Carreon (2009). Secondary seeded growth method was
used for the synthesis with the molar composition of the
synthesis selution of Zn*: Hmim: MeOH of 1:8:700. The
thickness of the resultant membrane was ~35 to 9 um.
CQO,/CH, selectivity of ZIF-8 membranes reported by
Pan et al (2012) and Bux et al. (2009) was relatively low,

Types of ZIF Membrane CO,/CH,

membranes Molar composition Synthesis method and duration thickness (um)  selectivity References

ZIF-8 Zn?*: Hmim: MeOH  In situ crystallization with solvothermal ~5-9 T Venna and Carreon (2009)
1:8:700 synthesized seeds and secondary seeded growth

(rubbing) with ¢-alumina tubular supports; 5h

ZIF-8 Zn**: Hmim: H,O Secondary seeded growth method (dip-coating ~2.5 ~3.33%% Pan et al. (2012)
1:70:1238 for 10s) with hollow Y87 ceramic fiber; 6h

ZIF-8 Zn**:Hmim: Microwave-assisted solvothermal with ~30 =2 7THE Bux et al. (2009)
MeOH:NaCOOH asymmetric titania disc; 4h
1:1.5:250:1

ZIF-8 Zn?*:Hmim: Microwave-assisted solvothenmal secondary ~12 N/A Bux et . (2011}
MeOH:NaCOOH seeded growth (dip-coating) with porous PEI*

1:1.52:506.4:1.03 maodified g-ahumina suppoit; 0.5-4h

#C0y:CHy = 30:50, **Ideal selectivity, *polyethyleneimine
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Fig. 2. Schematic diagram of ZIF-8 membrane formation involved nucleation and crystallization processes, adapted from
{Banerjee et al., 2008, Friscic et al., 2013)

and different molar

regardless of their thickness
composition of the synthesis solution (using water
(Zn*": Hmim: O of 1:70:1238) or sodium formate
(Zn™: Hmim: MeOH:NaCOOH of 1:1.5:250:1)). However,
microwave-assisted solvothermal synthesis process
reported by Bux et al (2009) required less synthesis
duration of 4 h as compared to the other methods such as
mn situ crystallization and secondary seeded growth

(5-6 h). On the other hand, by using microwave-assisted

solvothermal secondary seeded growth, Bux ef al. (2011)
successfully produced a thmner membrane (~12 pm) as
compared to their previous work (~30 um) using n situ
crystallization (Bux et al., 2009). However, the CO,/CH,
separation performance of the resultants ZIF-8 membranes
was not reported by Bux er al. (2011). Hence, the CO,/CH,
gas sepaeration performance for ZIF-8 membrane 1s still in
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Fig. 3: CO, adsorption-desorption and  diffusion
mechanism of ZIF-8 membranes
I_ COzgas
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Fig. 4 Schematic diagram of mass transfer of CO,
through  ZIF-8 membranes in steady state,
adapted from (Bux, 2011)

the initial stage due to inconsistency of the reported
results in the literature. Formation of a thin layer of ZIF-8
membranes with low defects and excellent CO,/CH,
separation performance still remains as a challenging task.
Therefore, development of a reproducible synthesis
method for synthesizing high quality ZIF-8 membranes
exhibit a great potential for further research study. A
standardized ZIF-8 membranes formation method with the
attractive properties and high CO,/CH, separation
performance need to be investigated and established.

CONCLUSION AND FUTURE PERSPECTIVE

The present review study provides comprehensive
account on the CO,/CH, separation from natural gas using
ZIFs membranes. ZIF possess desirable properties such
as high stability, large surface area and pores volumes.
We have emphasized on ZIF-8 membrane due to its
outstanding CO, permeance and relatively lugh CO,/CH,
selectivity as compared to the other ZIFs membranes.
Nevertheless, improvement of the current 7ZTF-8 membrane
formation and its separation performance is still needed.
In this vein, we suggest that further research could be
carried out on the development of a feasible and

reprocducible synthesis method for ZIF-8 membranes. This
requires the interdisciplinary understanding on the
mechanism of the membrane formation and CO,/CH,
separation process. Then, the membrane can be formed by
controlling the microstructure, thickness and eliminating
the defects thus increasing its CO,/CH, separation
performance.
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