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Abstract
Milne’s implementation on block predictor-corrector methods for integrating nonstiff ordinary differential equations is been considered.
The introduction of Milne’s implementation attracts a lot of computational benefits, which guarantees step size variation, convergence
criteria and error control. Existence and uniqueness for the nonstiff problems were recognized. The approach was employ Milne’s
implementation of the principal local truncation error on a pair of predictor-corrector method of Adams type formulas, which is
implemented either in P(EC)m or P(EC)m E mode. The implementation of Milne’s estimate and evaluation of the block method for nonstiff
ODEs was analyzed in details. In addition, an algorithm for the implementation of the method was specified.
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INTRODUCTION

Several techniques have been formulated to yield global
error estimation according to Dormand1. A distinctive
approach, frequently adopted if local error control is used
called tolerance reduction. This relies on the presumption of
tolerance balance being correct. In solving a differential
equations over the required interval, a new result is achieved
employing a decreased or increased tolerance. The deviations
in the result, obtained at like points can be used to
approximate the global error.
Computational methods for providing solution of ODEs of

initial value type are commonly divided as single-step or
multistep processes. From each one has its pros and cons and
many numerical analyst favours one or the other technique.
Moreover, such a choice may originate from the needs of the
problem being worked out. Authors viewed generally that
several types of numerical methods had better be equated to
the user aims1.

The initial value problem of a first-order differential Eq. 1
of the form is consider as:

(1)m mY (x) = f(x, y), y(a) = , x [a, b] and f:R×R R    

Eq. 1 is generally written as in Eq. 2:

(2)j j

i n+i i n+ii 1 i 1
y h f

 
   

where, h is the step size, "i, i = 1,...j, $j are unknown constants,
which are uniquely specified such that the equation is of order
j as discussed2.
It  is  assumed  that f 0 R  is  sufficiently  differentiable on

x 0[a, b] and satisfies a global Lipschitz condition, i.e., there is
a constant L$0 such that:

|f (x,  y) f (x,  y) | L | y y |, y,y R    

Under this presumption, Eq. 1 assured the existence and
uniqueness defined on x 0[a, b] as well as viewed to fulfill the
Weierstrass theorem3-5.
Where, a and b are finite and y(l) [y(i)1, y(i)2,..., y(i)n]T for i = 0

(1) 3 and f = [f1, f2,..., fn]T, originate in real life applications for
problems in science and engineering, such as fluid dynamics
and motion of rocket as presented by Mehrkanoon et al.6.

However,  Adesanya  et  al.7,  Ehigie et  al.8,   Fatunla9,
Ismail  et  al.10,   James et  al.11  and  Ken et  al.12  proposed
block  multistep  methods,  which were employed in
predictor-corrector mode. Block multistep methods have the

vantage of evaluating simultaneously at all points with the
integration interval, thereby reducing the computational
burden  when  evaluation  is  required  at  more  than  one
point  within  the  grid.  Again,  Taylor  series  expansion  is
used  to  provide the initial values in order to compute the
corrector.
Scholars have suggested block predictor-corrector

methods  for  the  numerical solution of nonstiff and mildly
stiff  ODEs  in  the  simple  form  of  Adams type combined
with P(EC)m or P(EC)m E  mode  implemented  using variable
step size appear5,13-16.  Nevertheless,   their  implementation
was geared towards Backward Differentiation Formula (BDF).
This study presents Milne’s implementation on block
predictor-corrector method for solving nonstiff ODEs of Eq. 1
founded on variable step size technique implemented in
P(EC)m or P(EC)m E mode. This technique comes with many
numerical advantages as expressed in the abstract.
A block-by-block method is a method for computing

vectors Y0, Y1, in sequence. Let the r-vector (r is the number  of 
points  within the block) Yµ, Fµ and Gµ for n = mr, m = 0, 1,. . .
be given as Yw = (yn+1,..., yn+r)T, F = (fn+1,..., fn+r)T then the l-block
r-point methods for Eq. 1 are given by:

j j(i) (i)
w w i w ii 1 i 1

Y A Y h B F  
  

where, A(i), B(i), i = 0,..., j are r by r matrices2,9,17.
Thus, from the above explanation, a block method has the

numerical advantage that in each practical application, the
solution is estimated at more than one point concurrently. The
number of points depends on the construction of the block
method. Hence, employing these methods can give quicker
and faster solutions to the problem,  which can be managed
to generate the desired accuracy6,15. Therefore, the objective
of this study is to propose Milne’s implementation of block
predictor-corrector methods for solving nonstiff and mildly
stiff ODEs implemented in P(EC)m or P(EC)m E mode adopting
variable step size technique. This technique possess the
following  vantages  like  designing  a  suitable  step
size/changing the step size, specifying the convergence
criteria (tolerance level) and error control/minimization as well
as addressing the gaps stated above.

MATERIALS AND METHODS

In this section according to Akinfenwa et al.2, the main
aim  is  to  derive  the  principal  implicit block method of the
Eq.  2.  It  is  proceed forward by seeking an approximation of
the exact solution y(x) by assuming a continuous solution Y(x)
of the Eq. 3:
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(m) (m 1)
n k n kf or f 
 

(m) (m)
n k n k n kf f (x y )  

(1)
n ky 

(3)
q k 1

i i
i 0

Y(x) d (x)
 



 

where, x 0[a, b], di are unknown coefficients and  arei (x)

polynomial basis functions of degree q+k-1, where, q is the
number of interpolation point and k is the collocation points,
respectively chosen to satisfy q = j$3 and k>1. The integer j$1
denotes the step number of the method. Thus, it is construct

a j-step implicit block multistep method with 
i

i
i

x x
(x)

h

    
 

by imposing the following Eq. 4 and 5:

(4)
iq

i
i n i

i 0

x x
d y ,i 0,...,q 1

h 


     
 



(5)
i 1q

i i
i n i

i 0

x x
d f , i Z

h






    
 



where, yn+1 is the approximation for the exact solution y(xn+1),
fn+1 = f(xn+1, yn+1), n is the grid index and xn+1 = xn+ih. It should
be observed that Eq. 4 and 5 leads to a system of q+1 Eq. 6 of
the AX = B where:

0 1 2 3 4 q

n n n n n n

0 1 2 3 4 q

n-k n-k n-k n-k n-k n-k

3

n-k

3 4 q

n-k n-k n-k

3 4 q

n 1 n 1 n 1

. . .

... ...

0 0 0 k(k -1) (k - 2) 0 0 0 0 0

... ...A

0 0 0 k(k -1) (k - 2) k(k -1) (k - 2) . . . k(k -1) (k - 2)

0 0 0 k(k -1) (k - 2) k(k -1) (k - 2) . . . k(k -1) (k - 2)

...

x x x x x x

x x x x x x
x

x x x
x x x  



3 4 q

n k n k n k

... . . .

0 0 0 k(k -1) (k - 2) k(k -1) (k - 2) . . . k(k -1) (k - 2)x x x  

(6)
T

0 1 2 3 k

T
n n 1 n k 1 n 1 n 2 n k n n 1 n k 1

X [x ,x ,x ,x ..., x ]

U [f ,f ,...,f ,f ,f ,...,f , y , y ,..., y ]        





Solving Eq. 6 using mathematica, we get the coefficients
of di and substituting the values of di into Eq. 4 and after some
algebraic computation, the implicit block multistep method is
obtain Eq. 7 as:

(7)q 1 q 1 q 1

i n i i n 1 i n 1i 0 i 0 i 0
y h f f

  

    
        

where, "i and $i are continuous coefficients.

General overview of the block predictor and corrector
methods: Assuming P defines the application program of the
block predictor, C a block corrector application program, with

E as the evaluation application program of f with respect to
given values of its parameter. If  is computed from the(0)

n ky 

block predictor,  is calculated one time and(0) (0)
n k n k n kf f (x y )  

employ the corrector at one time as well to obtain       ; this
describe the computation as PEC. Further appraisal of

 succeeded by another application program of(1) (1)
n k n k n kf f (x y )  

the corrector gives  and thus, denoted by PEC(2).(2)
n ky 

Implementing the application program of the block corrector
m many times can be referred to as PEC(m). Since m is constant,
 is accepted as the computational solution at xn+k. At this(m)

n ky 

point, the last computational value for fn+k is preferred as
 and  this  will be further decided whether(m 1) (m 1)

n k n k n kf f (x y ) 
  

or not to execute                          . Assuming this concluding
execution is done, the mode is denoted by P(EC)m or P(EC)m E.
Eventually  the  decision  clearly  impacts  the  next  step  of
the  execution,  when  both  predicted and corrected
numerical values for  yn+k+1 will rely on whether fn+k is accepted
as                 . Finally, for a given m, P(EC)m or P(EC)m E mode
utilize the corrector the same number of times; only P(EC)m E
requires one more evaluation per step than P(EC)m as
discussed4, 18.

Theorem 1: If the multistep method (2) is convergent for pth
order equations, then the order of (2) is at least p19.

Theorem 2: The order of a predictor-corrector method for first
order equations must be $1 if it is convergent19.

Theorems 1 and 2 draws the conclusion that the order
and convergence of the method holds.

Implementation on Milne’s block predictor-corrector
methods: Holding to3,4,18, the implementation in the P(EC)m or
P(EC)m E mode becomes significant for the explicit (predictor)
and implicit (corrector) methods if both are separately of like
order and this requirement makes it necessary for the
stepnumber of the explicit (predictor) method to be one step
higher than that of the implicit (corrector) method.
Consequently, the mode P(EC)m or P(EC)m E can be formally
examined as follows for m = 1, 2,....P(EC)m:

j 1 j 1
[0] [m] [m 1]
n j i n i i n i

i 0 i 0

y y h f
 

  
  

 

    

[s] [s]
n j n j n jf f (x , y )  

(8)
j 1 j 1

[s 1] [m] [s] [m 1]
n j i n i j n j i n i

i 0 i 0

y y h f h f }s 0,1,...,m 1
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P(EC)m E:

j 1 j 1
[0] [m] [m]
n j i n i i n i

i 0 i 0

y y h f
 

 
  

 

    

[s] [s]
n j n j n jf f (x , y )  

j 1 j 1
[s 1] [m] [s] [m]
n j i n i j n j i n i

i 0 i 0

y y h f h f }s 0,1,...,m 1
 


   

 

        

[s] [s]
n j n j n jf f (x , y )  

Noting that as m64, the result of evaluating with either of
the above mode will slope to those given by the mode of
correcting to convergence.
Moreover, predictor and corrector pair based on Eq. 1 can

be applied. The mode P(EC)m or P(EC)m E specified by Eq. 8,
where, h is the step size. Since the predictor and corrector
both have the same order p, Milne’s device is applicable and
relevant.
The following theorem demonstrate adequate condition

for the convergence of P(EC)m or P(EC)m E.

Theorem 1: Let  be a sequence of approximations of yn+1[m]
n 1{y }

obtained by a PECE... method. If:

n 1

f
(x , y) L

y 





(for all y near yn+1 including ) where, L is satisfies the[0] [1]
n 1 n 1y ,y 

condition  then the sequence converges to yn+1.
0

1
L< ,

h
[m]
n 1{y }

Proof: The numeric solution satisfies the equation:

j 1 j 1

n 1 i n i 0 n 1 n 1 i n i
i 0 i 0

y y h f (x ,y ) h f
 

    
 

      

The corrector satisfies the equation:

j 1 j 1
(m 1) (m)
n i i n i 0 n 1 n i i n i

i 0 i 0

y y h f (x ,y ) h f
 


    

 

      

Subtracting these two equations, it is obtain:

(m 1) (m)
n 1 n 1 0 n 1 n 1 n 1 n 1y y h [ f (x ,y ) f (x ,y ) ]
        

Applying the Lagrange mean value theorem to arrive at:

(m 1) (m)
n 1 n 1 0 n 1 n 1 n 1

f
y y h (y y ) (x , y*)

y


    


   



where,  Thus,(m)
n 1 n 1y y* y .  

(m 1) (m)
n 1 n 1 0 n 1 n 1 n 1

f
y y h y y (x ,y)

y


    


   



(m)
0 n 1 n 1hL y y   

m (0)
0 n 1 n 1[hL ] y y   

Now,

(m 1)
n 1 n 1

m

lim y y 0, if
 


 

0
0

1
hL 1 or L

h
  



This means that the conclusion of theorem 1 holds3. In
cases, where, Cp+1, C*p+1 are the computed error constant of
the predictor-corrector method, respectively. The following
consequence holds.

Proposition: Suppose the predictor method have order p*
and the corrector method have order p. Then: If p*$p (or p*<p
with m>p-p*), then the predictor-corrector methods
possesses the same order and the same PLTE as the corrector.
If p*<p and m = p-p*), then the predictor-corrector method
possesses the same order as the corrector, but different PLTE.
If p*<p and m#p-p*-1, then the predictor-corrector method
possesses the same order equal to p*+m (thus less than p).
Specifically, it is observe that suppose the predictor has

order p-1 and the corrector has order p, the PEC answers to
get a method of order p. Moreover, the P(EC)m or P(EC)m E
scheme has always the same order and the same PLTE4,20.
Combining4,18,21, Milne’s device stated that it is viable to

estimate the principal local truncation error of the explicit and
implicit (predictor-corrector) method without estimating
higher derivatives of y(x). Assuming that p = p*, where, p* and
p defines the order of the explicit (predictor) and implicit
(corrector) methods with the same order. Directly, for a
method of order p, the principal local truncation errors can be
written as in Eq. 9:
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C*p+1 h
p+1 y(p+1) (xn) = y(xn+j)-Wn+j+O(hp+2) (9)

Also in Eq. 10:

Cp+1 h
p+1 y(p+1) (xn) = y(xn+j)-Cn+j+O(hp+2) (10)

where, Wn+j and Cn+j are called the predicted and corrected
approximations given by method of order p while, C*p+1 and
Cp+1 are independent of  h.

Neglecting terms of degree p+2 and above, it is easy to
make estimates of the principal local truncation error of the
Eq. 11 as:

(11)
p 1p 1 (p 1)

p 1 n n j n j*
p 1 p 1

C
C h y (x ) W C

C C
 

  
 

   


Noting the fact that Cp+1 … C*p+1 and Wn+j … Cn+j.
However, the estimate of the principal local truncation

error Eq. 11 is used to determine, whether to accept the results
of the current step or to reconstruct the step with a smaller
step size. The step is accepted based on a test as prescribed by
Eq. 11 as22. Equation 11 is the convergence criteria otherwise
called Milne’s estimate for correcting to convergence.
Furthermore, Eq. 11 ensures the convergence criterion of

the method during the test evaluation.

Algorithm: A  written  algorithm  that  will   design   a   new
step  size  and  evaluate  the  maximum  errors  of  the
predictor-corrector methods in the form of P(EC)m or P(EC)m E
mode, if the mode is run m times:

Step 1: Choose a step size for h
Step 2: The order of the predictor-corrector methods must

be the same
Step 3: The step number of predictor method must be one

step higher than the corrector method
Step 4: State the principal local truncation errors of both the

predictor-corrector methods
Step 5: Define the tolerance level (Convergence criteria)
Step 6: Input the predictor-corrector methods in any

mathematical language
Step 7: Use any one step method to generate starting values

in needed, if not ignore step 6 and proceed to step 7
Step 8: Implement the P(EC)m or P(EC)m E mode as m

increases
Step 9: If step 7 fails to converge, repeat the process again

and divide the step size (h) by 2 from step 0 or if not,
proceed to step 9

Step 10: Evaluate the maximum errors after convergence is
reached

Step 11: Print maximum errors
Step 12:Use this formula stated below to design a new step

size after converge is reached:

1

4

p 1 p 1

qh
2(C * C ) 






Milne’s implementation approach is a collection of Adams
type of the predictor-corrector methods, which can be
implemented in P(EC)m or P(EC)m E mode1,4,13,21-23. All of these
sited above favour the implementation of Milne’s approach for
solving nonstiff ODEs.
Moreover, in its implementation, the predictor-corrector

methods have the same order, thus, demand that the
stepnumber of the predictor to be one step higher than the
corrector method. The principal local truncation error of both
the predictor-corrector methods are considered in the
construction of Milne’s implementation for the evaluation of
maximum errors. Again, evaluation of Milne’s implementation
is achieved with aid of the convergence criteria. This
convergence criteria decide, whether the result is accepted or
repeated as seen in the algorithm.
Nevertheless, on block predictor-corrector methods7-12, do

not possess the same attributes of Milne’s implementation
approach, which includes varying the step size, deciding the
convergence criteria for accepting the results, designing a
suitable step  size,  controlling  the  error,  implementing
P(EC)m or P(EC)m E mode and lastly, Adams type of the
predictor-corrector methods. These are in contradiction to the
implementation of the block predictor-corrector methods.

CONCLUSION

Milne’s implementation approach is seen as an extension
of the block predictor-corrector methods because of certain
parameters, which are utilized for the implementation. In
addition, the implementation of this method comes with
many computational advantages as mention previously in
Milne’s and Gear’s implementations. Finally, the algorithm
provides a vital step for the successful implementation of
Milne’s estimate.
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