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Abstract
In ensuring that food security is at an acceptable level, all of its range of indicators needs to be monitored and maintained. In this study,
farm household behaviour such as the mode of labour, type of fertilizer being used; cost of each component for the farm and so forth
can be used to predict the farm household output of crops. The crop output is one indicator of food security for household level. The
dataset used is based on the Village Level study (VLS) by the International Crops Research Institute for Semi Arid Tropics (ICRISAT). This
dataset consists of 37 features and 29 samples of households in 1975. For the prediction model, the Optimum Weight and Threshold
Neural Network (OWTNN) is proposed on 37 inputs and one output of crops for each household and compared with the Artificial Neural
Network (ANN) performance. The result of the proposed model shows that OWTNN gives a better performance than ANN, which is 99%
compared to 86%. Hence, it proves that the proposed model can be offered as one of the best predictors for farm household output. The
model also shows that farm household behaviour can affect farm crop output.
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INTRODUCTION

In 2010 UK Department of Food and Rural Affairs (DEFRA)
report1, one of the key features of food security was based on
household food security where everyone in all places should
be able to access and afford a healthy food1. The headline
indicator for the food security theme is the proportion of
income that a household spends on food. India, in the case of
villages such as Aurepalle, the village considered here,
households both plant  their  own  crops  and  work in other
farms to provide food. In some instances, the farms are owned
and operated for consumed food and profitable sales where
some farm owner sold the crops for its profits. Thus, the food
supply in this case was based mostly on crops from the farm
or other farm household outputs within the same village2.

The  International  Crops  Research  Institute  for  the
Semi-Arid  Tropics  (ICRISAT)  is  one  organization  which
studies  the  socioeconomics,  agro-biological,  institutional
constraints to agricultural development in Semi-Arid Tropical
(SAT) areas and they also help in testing and modifying the
new technologies generated by themselves for the benefits of
people in Indian villages2. For our case study, one dataset for
the year 1975 from Aurepalle village in India was taken based
on the ICRISAT study data to predict the farm household
output of crops. The ‘farm household’ term being used rather
than ‘farm’ because of the categories on the dataset. This
dataset was based on the research of small farmer, medium
farmer and large farmer2. Previous studies have shown that
many factors can reflect farm household crop outputs such as
the types of labour being used, the type of fertilizer being
used, the cost of each  component  for  the  farm  and  so on3-8.

Here, based on the village dataset,  the  farm  household  crops
output will be referred to as grains, vegetables or fruits, these
are also for fodder and seedlings use as well as human
consumption2.

In summary, this research studies farm household crop
output predictions, making use of the ICRISAT data for
Aurepalle village in the year of 1975. The model utilised is an
Optimized Weight and Threshold Neural Network (OWTNN)
the performance of which will be compared with the
traditional Artificial Neural Network (ANN).

LIMITATIONS IN THE STATE OF THE ART

The ANN is one of the best and well known tools for
prediction because of its fast  and  effectiveness  in  solving
non-linear problems9,10. Generally, ANNs have 3 layers, the
input layer (I), the hidden layer (can  be  more  than  one  layer,
J and K) and the output layer (L) as shown in Fig. 1. The
interconnection   between   each   layer   consists   of   weights
(WIJ, WJK and WKL) and at each neuron there are also thresholds
connection (BI, BK and BL). An ANN can be used with either
multiple inputs to single output or multiple inputs to multiple
outputs11.

Although, an ANN offers  a  good  tool  in  prediction  it
does travel to local extrema and the convergence is slow9.
Moreover, when the ANN is not able to generalize, over-fitting
and under-fitting can occur especially when the dataset is
divided into training, validation and testing parts12,13. Most of
these problems happen because the final interconnecting
weight and threshold of the network are constantly and
rapidly   changing   in   an   uncontrolled   manner   during   the
training   phase14.   In   solving    these    problems,    a    Genetic

Fig. 1: Basic ANN architecture
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Algorithm  (GA)  is   used   to    optimize  the   weight   and   the
threshold of ANN and the process will be explained in later
sections.

MATERIALS AND METHODS

The GA is a well-known technique for its capability in
optimizing certain datasets or any network architecture.
Furthermore, it offers an effective search technique based on
the principle of genetics and natural selection11,15. The
advantages of adding a GA to an ANN are that it can avoid
local minima, which it finds rapidly and discards. It also can
search every region simultaneously with great efficiency
through the GA operations and parameters of selection,
crossover probability and mutation probability9,10,15,16.

In this study, ANN had multiple inputs and one output
with one hidden layer with 30 neurons. The number of  hidden
neurons was selected based on multiple ANN training and was

taken from the best regression value. The data was  divided  to
70% for training, 15% for validation and 15% for testing. Then,
the GA will optimize the weights and the thresholds of the
ANN in Fig. 1 by its aforementioned bio-inspired evolutionary
operators. The process of the OWTNN is shown in the flow
diagram of Fig. 2.

This model was simulated in the MATLABTM 2010
environment  where  each  parameter  was  selected  as Fig.  2.
The inputs and the output of the ANN were as in Table 1,
consisting of 37 features with 29 samples. As explain
previously, the dataset was based on Aurepalle village in India
for the year 1975.

RESULTS AND DISCUSSION

From Fig. 2, GA will randomly initialize all the weight and
threshold values for the ANN based on the  size  of
chromosomes for each population. Chromosomes consist of

Fig. 2: OWTNN process using GA
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a number of genes which is an array of variable values to be
optimized11,15. The chromosomes sizes will depend on the total
interconnections between the number of inputs, number of
hidden neurons and number of output neurons in ANN. After
that, the ANN will be trained iteratively by the GA based on the
population size for each chromosome until it achieves the best
Mean Square Error (MSE) as Eq. 1 for the fitness function.

In Eq. 1, NNout  is the ANN output and T is the actual
output based on the dataset. The result of the optimization
process   is   shown  in  Fig.  3   where  the   plot   are   based  on
MSE (fitness value) and the average distance between
individual  chromosomes  at  each  generation:

(1)

total

i

N
2

out
i 1

total
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where, Ntotal is the total number of outputs.
When the GA optimization is performed, the best weight

and threshold values generate by the GA is applied to the ANN
and it will calculate the farm household output prediction as
in Fig. 4. This shows that OWTNN gives better performance
than ANN (Fig. 5), R = 0.99 compared to 0.87. The performance
comparison of ANN is not good because of the over-fitting
and  under-fitting   problems   for  validation   and   testing,   as

Table 1: Inputs and output variable
Features Output
Land related
Plot value (Rs), crop areas (Acres), soil type, irrigated area (Acres)
Crops related
Total seed value (Rs), total main product (Rs), total by product value (Rs), total output value (Rs), total input value (Rs), net income (Rs), net return (Rs)
Fertilizer and pesticide related
Total fertilizer value (Rs), total FYM quantity (Quintals)
Total FYM  value (Rs),  Sheep  penning  value  (Rs), tank  silt/soil adding (Rs), all organic  manure value  (Rs), nitrogen inorganic  (kg),  phosporus  (kg),
potash (kg), total N (kg), total P2O5 (kg), total K2O (kg), all pesticides value (Rs), crop output
Manpower/animal power related Quantity (kg)
Family male (h), family female (h), family child (h), hired  male (h), hired female (h), hired  child (h), owned  bullock (h), hired  bullock  (h), total  family
labor value (Rs), total hired labor value (Rs), total owned bullock labor value (Rs), total hired bullock labor value

Fig. 3(a-b): GA optimization result, (a) Best: 0.029793, Mean: 0.27315 fitness values and (b) Average distance between individuals
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Fig. 4(a-d): ANN results, (a) Training, (b) Validation, (c) Test and (d) All

Fig. 5(a-d): OWTNN results, (a) Training, (b) Validation, (c) Test and (d) All
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shown in Fig. 4, which have been pointed out. If compare with
Fig. 5, all data division part (training, validation and testing)
show considerable generalization ability.

CONCLUSION

In this study, OWTNN has been successfully applied to
predict the farm household crop output for each household in
Aurepalle, India with a 14% improvement in the regression
value compares to original ANN methods (to 0.99). It also
shows that each activity or component being used and the
value of each component on the farm can affect the crops
output of a household.
In addition, the proposed model shows how to achieve

good generalizations of the ANN network by optimizing the
weight and the threshold for each neuron. The model offers
the prospect of an excellent prediction tool for farm
household crop output. This method offers the option of
timely analysis of household food security in order to inform
future modifications of farming activity patterns to achieve
better crops outputs.
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