Assessment of Different Plant Extracts for Their Repellency Against Red Pumpkin Beetle (Aulacophora foveicollis) Attacking Muskmelon (Cucumis melo L.) Crop

Said Mir Khan¹ and Muhammad Wasim²
¹Department of Entomology, Faculty of Agriculture, Gomal University, D.I.Khan, Pakistan
²Baluchistan College of Agriculture, Quetta, Pakistan

Abstract: Results reveal that neem extract in benzene was most effective repellent of red pumpkin beetle, followed by Bakain extract in benzene. These two extracts were found non-significantly different from each other. Herbal extract in ethanol was found significantly less effective, followed by Herbal extract in benzene. Bakain and Neem extracts in ethanol. All of these plants extracts were found significantly effective in the repellency of red pumpkin beetles compared to control.

Key words: Repellency, Neem, bakain, herbal, plant extracts, Aulacophora foveicollis, muskmelon

Introduction
Muskmelon (Cucumis melo L.) is an important and cheap summer fruit, commonly grown throughout Pakistan, particularly in D.I.Khan, Tank and Bannu as cash crops. It is a rich source of vitamins A, B, C and minerals. It is attacked by a number of insect pests, among them red pumpkin beetle, huda beetle, fruitflies, jassids and aphids are the most destructive. These insects adversely affect its production, quality and its market value. The use of plants derived pesticides, which are usually much safer and effective have drawn the attention of scientists throughout the world. More than 2300 plants have been identified with pest control properties and another 100 plants are being studied (Grainge and Ahmad, 1988).

Neem (Azadirachta indica) (A.Juss.): Patil et al. (1988) tested Neem seed extract as deterrent against Anomus mori (Bust). Babu and Bari (1969) used Neem seed extract as deterrent against Eupracbus lutea. Chakravorty et al. (1969) reported Neem seed extract as repellent against Aulacophora foveicollis (Lucas). Goyal et al (1971) reported that the leaves and seeds of Neem tree were found repellent to some insects. Joshi and Sirianath (1980) stated that treated Spodoptera litura (F) female with Neem kernel extract laid decreased numbers of eggs. The Spodoptera litura (Boised) larvae were affected by the residues of Neem kernel extract after 24 hours of treatment. The extract showed good phagodeterency and residual activity when applied at 0.9% (Neemon and Ascher, 1981).

Islam (1983) tested seed and leaves extract of Neem with hexane, diethyl ether, 95% ethanol, acetone and distilled water. He found that ether and ethanolic extracts repelled the adults and larvae of rice hispa. According to him the aqeous and ethanolic extracts of leaves, seed of Azadirachta indica, Melia azedarach also deterred feeding in adults of pulse beetles and early instar larvae of jute hairy caterpillars. Karol and Honga (1984) studied the effect of crude extracts from Neem (kernels and leaves), tomatoes leaves and hot pepper against foliar beetles, flower thrips, pod borer (larvae) and reported that Neem kernels and hot pepper caused repelency effect on foliar beetles and flower thrips. Schmutterer (1985) reported that seed kernels of Neem can effectively be used against lepidopterous, coleopterous, chrysomelids and other polyphagous larvae. He also obtained satisfactory results of this product on Tenhreinidae, Agromizde and Coccinellidae larvae. Ahmad and Michal (1988) observed that Neem tree contains promising pest control substance and found effective and economical. Moreover, these materials are easy to process at village level and can be utilized by limited farmer resources.

Bakain (Melia azedarach): Leaves and fruits of Bakain, Melia azedarach were found effective in the repellency of adults and nymphs of grasshopper Schistocerca concilata when sprayed on coffee and cabbage plants under laboratory conditions (Leppage 1946). Leaves and fruits of Bakain were used as insecticides in Philippines (Quisumbing, 1964). Panji (1964) reported that 10% ethanolic extract of dried fruits of bakain caused 60.0 to 78.3% mortality of larvae of Pieris brassicae and 48.3% of Aulacophora foveicollis with in 96 hours. He further stated that 5% ethanolic extract of Bakain repelled larvae of Pieris brassicae, nymphs and adults of Chrogonus trachypterus (Blanch) and adults of Aulacophora foveicollis. Khan and Siddiqui (1994b) recorded good repellency of Tribolium castaneum with Bakain's seeds and leaves extracts in various solvents.

Hermal (Peganum harmala): The smoke of Hermal Peganum harmala was used as disinfectant in the houses since long times. Secoy and Smith (1983) reported that the roots of this plant contain toxic alkaloids for lice and mosquitoes. The present investigations were undertaken to determine the repellency effect of Neem (Azadirachta indica), Bakain (Melia azedarach) and Hermal (Peganum harmala) extracts in ethanol and benzene against red pumpkin beetles Aulacophora foveicollis).

Materials and Methods
Plant extracts: The extracts from plants were obtained at Entomological laboratory, Faculty of Agriculture, Gomal University, D.I.Khan. The leaves and seeds of Bakain, Neem and leaves of Hermal were collected, cleaned and shade dried for two weeks. The leaves of Neem, Bakain and Hermal were ground to fine powder with the help of electric grinder, while the seeds of Bakain and Neem were ground with the help of paste and mortar. 10g of each powder was taken in the
Khan and Wasim: Repellency of red pumpkin beetle against some plant extracts

soxhlet apparatus and 50 ml distilled ethanol (alcohol) was added for digestion under boiling point at 45 °C for 24 hours. The ethanolic mixture was filtered and then evaporated under reduced pressure at 50 °C in a rotary evaporator to remove the solvent. The resulted crude material was diluted a benzene alcohol and used for their efficacy against red pumpkin beetle.

Repellency Test of Plant Extracts Against Red Pumpkin Beetle:
The repellency tests of Neem, Bakain and Hormel extracts in benzene and ethanol against red pumpkin beetles were conducted at the farm of Agricultural Faculty, Gomal University, D.I. Khan in a randomized complete block design with three replications. There were seven treatments including control in each replication. Bukhara variety of muskmelon was sown in sub-plots having 3 x 2 meter size. Row to row and plant to plant distances were kept 180 and 60 cm respectively. Two seeds per hill were sown and after germination thinning was done to leave one seedling per hill. All agronomic practices were done at par in all of the treatments. Recommended dose of urea fertilizer was applied to crop with first irrigation. The plants were sprayed with the following plant extracts with help of knapsack sprayer:

T1 = Neem Extract in Ethanol
T2 = Neem Extract in Benzene
T3 = Bakain Extract in Ethanol
T4 = Bakain Extract in Benzene
T5 = Hormel Extract in Ethanol
T6 = Hormel Extract in Benzene
T7 = Control (Un-sprayed plants)

Data on the basis of adult beetles/plant were recorded daily up to 7 days and then on 10th day of treatments. The data were subjected to statistical analysis and means of treatments were separated by LSD test.

Percent repellency of red pumpkin beetles was calculated by using the following Abbot's formula

\[\text{Percent repellency} = \frac{A - B}{A} \times 100 \]

where:

A = Average No. of red pumpkin beetles present on untreated plants.
B = Average No. of red pumpkin beetles present on treated plants.

Results and Discussion

The results of repellency effect of different plant extracts on red pumpkin beetles after different durations are presented in Table 1.

Table 1: Repellency effect of different plant extracts on red pumpkin beetles attacking muskmelon after different durations

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>70.00a</td>
<td>61.67a</td>
<td>47.78abc</td>
<td>41.11ab</td>
<td>48.52a</td>
<td>52.38ab</td>
<td>48.81b</td>
<td>32.14b</td>
<td>51.69b</td>
</tr>
<tr>
<td>T2</td>
<td>80.00a</td>
<td>68.33a</td>
<td>64.45a</td>
<td>56.89a</td>
<td>55.19a</td>
<td>62.70a</td>
<td>57.94a</td>
<td>54.76a</td>
<td>60.70a</td>
</tr>
<tr>
<td>T3</td>
<td>66.67ab</td>
<td>68.00a</td>
<td>46.87bc</td>
<td>34.44b</td>
<td>40.19a</td>
<td>61.69ab</td>
<td>46.82b</td>
<td>31.65b</td>
<td>47.73bc</td>
</tr>
<tr>
<td>T4</td>
<td>71.11a</td>
<td>68.33a</td>
<td>68.89ab</td>
<td>47.78ab</td>
<td>50.56a</td>
<td>67.94a</td>
<td>50.40a</td>
<td>50.00a</td>
<td>56.74a</td>
</tr>
<tr>
<td>T5</td>
<td>54.65ab</td>
<td>46.67a</td>
<td>36.56c</td>
<td>36.86b</td>
<td>38.16a</td>
<td>42.06b</td>
<td>46.22b</td>
<td>31.65b</td>
<td>41.83c</td>
</tr>
<tr>
<td>T6</td>
<td>63.33ab</td>
<td>53.33a</td>
<td>41.11c</td>
<td>28.89b</td>
<td>41.65a</td>
<td>41.27b</td>
<td>43.46b</td>
<td>26.75b</td>
<td>43.47cd</td>
</tr>
<tr>
<td>T7</td>
<td>0.00b</td>
<td>0.00b</td>
<td>0.00d</td>
<td>0.00c</td>
<td>0.00b</td>
<td>0.00c</td>
<td>0.00c</td>
<td>0.00c</td>
<td>0.00e</td>
</tr>
</tbody>
</table>

Means followed by same letters are not significantly different from each other at 5% level of probability.
Khan and Wasim: Repellency of red pumpkin beetle against some plant extracts

Neem extract in benzene repelled maximum number of beetles followed by Bakain extract in benzene, Neem and Bakain extracts in ethanol. HermaI extracts in benzene and ethanol. All of the plant products were found non-significantly different from each other in their repellency effect on the tested beetles at 5% level of probability and were found significantly effective compared to control.

Percent repellency of red pumpkin beetles after six days of treatment: Data of repellency of red pumpkin beetles recorded after six days of treatment show that Neem extract in benzene was found superior to Bakain extract in benzene, Neem and Bakain extracts in ethanol, HermaI extracts in ethanol and benzene. Neem and Bakain extracts in benzene were found non-significantly different from each other and differed significantly from HermaI extracts. All of the plants extracts were found significantly effective compared to control in their repellency against red pumpkin beetles on muskmelon plants at 5% level of probability.

Percent repellency of red pumpkin beetles after seven days of treatment: Results of treatments obtained after seven days reveal that neem extract in benzene was found effective against the pest followed by Bakain extract in benzene, Neem and Bakain extracts in ethanol, HermaI extracts in benzene and ethanol. All of these plants products were found non-significantly different from each other and differed significantly compared to control at 5% level of significance in their repellency against the tested beetles.

Percent repellency of red pumpkin beetles after ten days of treatment: Data recorded after ten days of treatment show that neem extract in benzene repelled significantly more beetles followed by Bakain extract in benzene, Neem and Bakain extracts in ethanol, HermaI extracts in ethanol and benzene. All of the tested plant extracts were found significantly effective against the pest in their repellency compared to control.

Overall effectiveness of plant extracts on red pumpkin beetles: It is evident from the Table 1, that Neem extract in benzene was found most effective in the repellency of red pumpkin beetles followed by Bakain extract in benzene. These two extracts were found non significantly different from each other. HermaI extract in ethanol was found significantly least effective, followed by HermaI extract in benzene, bakain extract in ethanol, Neem extract in ethanol. All of these plants extracts were found significantly effective in their repellency against red pumpkin beetles compared to control.

Neem extracts were found most effective repellent against red pumpkin beetle. Chakravorty et al. (1989) also found Neem seed extract as repellent against Aulacophora foveicollis (Lucas). Panji (1984) stated that 10% ethanic extract of dried fruits of Bakain caused 48.3% mortality of Aulacophora foveicollis with in 96 hours of treatment. Secoy and Smit (1983) reported that the roots of HermaI plant contain toxic alkaloids for lice and mosquitoes.

References