Effect of Different Planting Dates and Spacing on Growth and Yield of Garlic Cv. Bianco

Muhammad Jamroz¹, Muhammad Ishfaq², Nisar Naeem³, and Javed Iqbal¹
¹NWFP Agriculture University, Peshawar, Pakistan
²Department of Horticulture NWFP, Agriculture University, Peshawar, Pakistan
³Agricultural Research Institute, Tarbela, Peshawar, Pakistan

Abstract: An experiment on the effect of different planting dates and spacing on the growth and yield of garlic cv. Bianco was carried out at Malakander Research Farm, NWFP Agricultural University Peshawar during the year 1995-96. Four different plant spacing i.e. 4 cm, 8 cm, 12 cm and 16 cm were kept at four different planting dates i.e. Ist November, 15th November, 30th November and 15th December. The data revealed that both planting dates and spacing significantly affected the number of days to emergence, number of days to maturity, plant height, number of leaves/plant, number of cloves/bulb, bulb size, bulb weight and yield (Kg/ha). Maximum plant height (87.66 cm), number of leaves (8.10), number of cloves/bulb (34.46) bulb size (19.71 cm), bulb weight (44.80 g) and total yield (14166.66 kg/ha) were recorded in plants that were sown on 1st November with plant spacing of 8 cm, while minimum values were recorded for the mentioned parameters in plants sown on 15th December with plant spacing of 4 cm. Maximum number of days to emergence (12.60) and maturity (198.0) were found in plants sown on 15th December with plant spacing of 4 cm. It is suggested that garlic should be sown before the mid of November with plant spacing of 8 cm under the agro-climatic conditions of Peshawar.

Key words: Planting dates, growth yield, Garlic Cv. Bianco

Introduction
Garlic (Allium sativum) belongs to the family Amaryllidaceae. It is popular spice and is consumed throughout the country. As the performance of aerial plant parts totally depend upon the growth and development of subterranean plant parts, therefore, proper space and environment should be provided to the root system. Similarly different plant species and varieties require specific season for the completion of their growth and developmental stages i.e. vegetative and reproductive, that is why vegetables are grouped as summer and winter vegetables. For this very reason vegetable species should be planted at specific time of the season. Garlic production is very low in Pakistan specifically in NWFP as compared to other advanced countries of the world. Many factors are responsible for this low yield. Beside other planting time and plant spacing are the key factors, which affect the yield of crop. Keeping in view the importance of spacing and sowing time this project was carried out. Peirce et al. (1983) recorded the best planting time from March to April for Chines, March for Centenario, and April for Gigante daevinia. They also noted that centenario gave highest yield (10 tons/ha) when planted in February or March while the remaining gave better performance in February. Rahim et al. (1984) also recorded the highest yields 15 tons/ha in case of the cloves which were taken from the large mother bulbs and planted on 13 October at 100 plants/m². Rugge (1984) reported the highest yield 10.74 tons/ha planting on 8 June and 8 July. He also recorded that first grade bulbs were higher with the latter planting date. Ferrarini (1985) reported trails on sowing density. He recorded that yield increased with increasing plant density but size is reducing. He also noted that a density of 30-40 plants/m² has the best results. Park and Lee (1989) planted Northern and Southern ecotypes of garlic on eight dates from 2 September to 1 February. They recorded that greatest bulb weight and diameter with the earliest planting in the northern ecotype, but the number of cloves/bulb were higher in the southern ecotype, but the number of cloves/bulb were higher in the southern ecotype. They also recorded that delay in planting will increase plant height and number of leaves. Singh and Phogat (1989) reported in 2 year trials with a local cultivar, the cloves were planted at 20 x 10 cm on 10, 20 or 30 October. Data were tabulated on average plant height, number of leaves/plant, bulb length and diameter, number of cloves/bulb weight and yield. In both years the bulb yield was highest (131.3 and 131.5 g/ha) from the planting on 20 September and declined with delayed planting to 59.4 and 59.5 g/ha from planting on 20 October. Autumn planted garlic generally showed little shoot growth in the autumn. Cultivars adapted to cold areas showed less growth in the autumn than those adapted to warm areas. autumn, cold adapted cultivars showed the least growth. Warm adapted cultivars gave lower yields and smaller cloves when planted in spring than when planted in autumn, but cold adapted cultivars did not show this effect. Maturity date was hardly affected by planting date, but spring planted, cold adapted cultivars continued vigorous bulb growth longer than those planted in autumn. When planted in spring, most cultivars formed intermediate and/or single cloved bulbs. The frequency of abnormal bulb development was lower in cold adapted than in warm adapted cultivars and lowest in the late maturing, cold adapted cultivars. Spring planted garlic gave the highest yields when the cloves were first stored at outdoor temperatures and then transferred to B 2C from early winter until planting, spring planting of late maturing, cold adapted cultivars in cold areas was considered to be promising. Anna (1995) reported in trials at Mussomeli in 1991-93, garlic cv. pacco clove planted at densities of 20, 25, 30 or 50 plants/m². Density had no effect on sprouting or growth rate. Bulb yield increased with increasing density but average bulb size decreased. Bulb yield were 47% higher from a planting density of 40 plants/m². Materials and Methods
An experiment to find out the effect of different planting dates and spacing on the growth and yield of garlic cv. Bianco was carried out at Malakander Research Farm, NWFP Agricultural University Peshawar, during the year 1995-96. The cloves were obtained from vegetable section, Agricultural Research Institute Tarbela, Peshawar. The cloves were sown on four different dates i.e. Ist November 1995, 15 November, 30th November and 15th December 1995 and were spaced at 4 cm, 8 cm, and 12 cm and 16 cm with row to row distance of 15 cm and the area of the subplot was 4 cm². Irrigation and...
weeding were done whenever necessary. The experimental plot was ploughed, well prepared and 150 kg of nitrogen in the form of ammonium nitrate per hectare was applied in two split doses. There were 16 treatments and two replications. Randomized Complete Block design with split plot arrangement, replicated three times was used. The experimental plot was regularly observed and data were recorded on Day to emergence, Plant height (cm), Number of leaves per plant, Days to maturity, Bulb weight (g), Number of cloves/bulb and Yield/hectare (kg/ha).

Results and Discussion
The results pertaining to number of days to emergence of garlic cv. Blanco are given in Table 1. The results show that planting dates of Ist November with the spacing of 8 cm were the most effective in minimizing number of days to emergence, followed by planting space of 4 cm which were sown on 15th November, while maximum number of days to emergence were recorded in the plants that were sown on 15th December with plant spacing of 16 cm. The reason might be prevailing low temperature in the severe cold months of the session. As temperature influences all the vital activities of the plant species, the low temperature might have delayed the sprouting.

The result pertaining to the plant height are given in Table 2. The results show that planting of 1st November with spacing of 8 cm was the most effective in increasing the plant height. Maximum plant height was recorded in the plants sown on Ist November with a plant spacing of 8 cm. While minimum plant height was noted in the plants sown on 15th December with plant spacing of 4 cm.

Significant differences were also recorded for other treatments of plant spacing and planting dates. The results are in agreement with Takagi (1989) and Park and Lee (1989) who noted that shoot growth and plant height was maximum when garlic cultivars were planted in early autumn or from 2nd September to Ist February.

The results pertaining to number of leaves per plant are given in Table 3. The results shows that planting date of 1st November with planting space of 8 cm was most effective in increasing the number of leaves per plant. Maximum number of leaves/plant was observed at the planting space of 8 cm that were sown on 1st November, followed by planting space of 12 cm that were sown on 15th November significant difference was also observed between number of leaves/plant.

Table 4: Effect of different planting dates and spacing on days to maturity of garlic cv. Blanco

<table>
<thead>
<tr>
<th>Time</th>
<th>Spacing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov</td>
<td>4 cm</td>
<td>12 cm</td>
</tr>
<tr>
<td>Ist Nov</td>
<td>10.00</td>
<td>12.00</td>
</tr>
<tr>
<td>15th Nov</td>
<td>9.67</td>
<td>12.00</td>
</tr>
<tr>
<td>30th Nov</td>
<td>9.67</td>
<td>12.00</td>
</tr>
<tr>
<td>Nov</td>
<td>14.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Mean</td>
<td>10.00</td>
<td>12.00</td>
</tr>
</tbody>
</table>

L.S.D. value for time at 5% level of probability = 0.0707
L.S.D. value for spacing at 5% level of probability = 0.7277
L.S.D. value for interaction at 5% level of probability = 1.469

Table 5: Effect of different planting dates and spacing on number of cloves per bulb of garlic cv. Blanco

<table>
<thead>
<tr>
<th>Time</th>
<th>Spacing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov</td>
<td>4 cm</td>
<td>8 cm</td>
</tr>
<tr>
<td>Ist Nov</td>
<td>8.20</td>
<td>8.20</td>
</tr>
<tr>
<td>15th Nov</td>
<td>8.20</td>
<td>8.20</td>
</tr>
<tr>
<td>30th Nov</td>
<td>8.20</td>
<td>8.20</td>
</tr>
<tr>
<td>Nov</td>
<td>11.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Mean</td>
<td>8.80</td>
<td>11.00</td>
</tr>
</tbody>
</table>

L.S.D. value for time at 5% level of probability = 2.005
L.S.D. value for spacing at 5% level of probability = 0.899
L.S.D. value for interaction at 5% level of probability = 3.168

Table 6: Effect of different planting dates and spacing on total yield (kg/ha) of garlic cv. Blanco

<table>
<thead>
<tr>
<th>Time</th>
<th>Spacing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov</td>
<td>4 cm</td>
<td>8 cm</td>
</tr>
<tr>
<td>Ist Nov</td>
<td>4.33</td>
<td>4.33</td>
</tr>
<tr>
<td>15th Nov</td>
<td>4.33</td>
<td>4.33</td>
</tr>
<tr>
<td>30th Nov</td>
<td>4.33</td>
<td>4.33</td>
</tr>
<tr>
<td>Nov</td>
<td>7.33</td>
<td>7.33</td>
</tr>
<tr>
<td>Mean</td>
<td>5.33</td>
<td>6.33</td>
</tr>
</tbody>
</table>

L.S.D. value for time at 5% level of probability = 1.317
L.S.D. value for spacing at 5% level of probability = 0.997
L.S.D. value for interaction at 5% level of probability = 1.007

207
days to maturity was maximum when garlic was planted a
14th December with the spacing of 10 cm. These results are
in accordance with Piekoto et al. (1983) and Rahim et al. who
also found that best planting dates are October and November.
The results pertaining to the number of cloves/bulb are given in
Table 5. The results shows that planting date of lst November
with spacing of 8 cm was the most effective in increasing the
number of cloves/bulb. Maximum number of cloves/bulb were
recorded in the plant spacing of 8 cm sown on lst November
followed by planting space of 12 cm with planting date of
15th November. It is obvious from the data that there is a
remarkable difference between the number of cloves/bulb at
planting date of lst November with plant spacing of 4 cm.
These results are in accordance with Scheffer (1985) who
recorded that bulb from early plantings contained more cloves
and have more weight. Similar results were obtained by Singh
and Phogat (1989) they reported that planting local cultivar of
garlic from September to October give more number of
cloves/bulb and hence the yield is increased.
The results pertaining to the weight of bulbs are given in Table
6. The results shows that planting date of lst November with
spacing of 8 cm was the most effective in increasing the
weight of bulb. Maximum bulb weight was observed in the
plants sown on lst November with spacing of 8 cm followed
by spacing of 12 cm sown on 15 November. It is obvious from
the data taken that there was a remarkable difference in bulb
weight obtained from the plants sown on lst November with
spacing of 8 cm and those sown on 15 December with spacing
of 4 cm. These results are in agreement with the results of Rahim and
and D-Anna (1995) who also found that bulb weight
was highest from earlier planting.
The results pertaining to the yield per hectare are given in Table
7. The results shows that planting date of lst November with
spacing of 8 cm was the most effective in increasing the total
yield. Maximum total yield were recorded at spacing of 8 cm
with planting date of lst November followed by spacing of 12
cm with planting date of 15th November. It is obvious from
the data that there is a remarkable difference in the total yield of
garlic cv. Blanco sown on lst November with spacing of 8 cm and
tose sown on 15th December with spacing of 4 cm. These
results are in agreement with Piekoto et al. (1983),
Scheffer (1985), Rahim and Talukdar (1986), Park and Lee
(1993) and Orlowski and Rekowski (1993). All of the above
mentioned researchers recorded that highest total yield of
garlic was recorded on the earliest planting date mostly during
the period of September to October.

References
(Allium sativum L.) for storage to variation in irrigation
regime and in planting density. Riviste delle Ortofioricultura
italiana, 70: 285-298.
Ferraneresi, A., 1985. Studies on sowing density in garlic
Emilia Romagna, Rivista di Frutticoltura e di ortofioricultura,
of garlic cloves on yield. Biuletyn Warzywniczy, 40: 33-44.
the growth and bulb formation of northern and southern
garlic ecotypes in Cheju. Journal of Korean Society of
Piekoto, N., T., Ogata and F.A.R. Figueira, 1983. Effect of
five planting dates on four garlic cvs. At anapolis.
054-01697).
of planting, mother bulb size and plant density on the yield of
planting date and plant spacing of garlic. Bangladesh Journal of
Zealand Commercial grower, 36: 1.
sowing times on the growth and bulb yield of garlic.
Takagi, H., 1989. Growth and development of spring planting
garlic in cold climate regions of Japan. Journal of the
Japanese Society for Horticultural Sci., 58: 139-147.
Yahya study Grad, 1992. Study on the effects of clove size,
nitrogen and phosphorus on the yield of garlic. (M.Sc.