An Evaluation of X-Radiography Studies in Estimation of Gastric Emptying Time (GET) in Whiting (Merlangius merlangus L.)

A. G. Mazlan, B. H. R. Othman and D. J. Grove

Marine Science Programmes, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor D. E. Malaysia

'Nuffied Fish Laboratory, School of Ocean Sciences, University of Wales Bangor, Menai Bridge LL59 5 EY UK

Abstract: This study investigates the use of X-ray technique in estimating the gastric emptying time in whiting (Merlangius merlangus L.) fed in the laboratory conditions. All the experimental fish was fed to satiation with their natural prey sprats. The dispersive type radiopaque compound Barium Sulphate (BaSO₄) paste was pre-injected in the body cavity of sprats in proportion to the body weight (0.1 to 0.16 ml/g sprat) prior to the experimental feeding. The BaSO₄ paste was found suitable to portray the actual movement of food/ prey items over different time since feeding that for fish that took larger satiation meal required longer time to empty the stomach. Results of this study dissaproved the earlier claimed that the gastric emptying times (GET) remained constant as meal size increased. Results on modeling of satiation feeding were also discussed.

Key words: X-radiographic, satiation feeding, radio-opaque markers, gastric emptying time

Introduction

Production in both wild and cultivated fish populations are largely depends on food consumption and the way in which food is utilized within the body. Important aspects of trophic dynamics of fish include appetite, meal size and frequency, rate of gastric evacuation and assimilation efficiency and many other methods have been devised to study these parameters. One of the popular methods is to use the X-radiographic techniques to observe and describe the movement of food items in the alimentary tracts of fish after feeding. Yet, this method has been subjected to serious debate due to ambiguity on the susceptibility of the various types of radio-opaque markers to various species of the experimental fish. The key point in such a study is to ensure and validate that the types of radio opaque used are well mixed, move and represent the emptying of the food item as it passes along the alimentary tracts. Particulate markers such as ballotini (lead glass beads), electrolytic or metallic iron powder (fillings) and lead shot have been used. Iron particles worked well in feeding studies of the Atlantic salmon (Salmo salar, Talbot and Higgins, 1983) but not in similar studies for Arctic char (Salvelinus alpinus, Jorgensen and Jobling, 1988). Ballotini have been widely used to estimate GET and gastric emptying rate (GER). Hossain et al. (1998) used them in an X-ray study of African catfish fingerlings and found that they did not affect feed preference and gastric emptying rate. Sims et al. (1998) successfully estimated the rates of gastric emptying and return of appetite using formulated diet containing radio-opaque glass beads in lesser spotted dogfish (Scyliorhinus canicula). In contrast, several studies carried out to test the validity of particulate markers indicated that there were significant effects depending on particle size and density, on estimates of GER and GET caused by retention of the marker (Talbot and Higgins, 1983; dos Santos and Jobling, 1990; Jobling et al., 1995a,b).

Seyhan et al. (1998) studied the gastric emptying of natural food (Sprattus) by whiting (388±50% body weight) at range 0 to 36EC and reported that gastric emptying of meals up to 4% of body weight was usually complete within 50 h, independent of meal size. In contrast, Bromiley (1988) found much longer gastric emptying times (GET) up to 100 h · under similar conditions when his fish consumed voluntary meals, which were up to five-fold larger.

To resolve this disagreement, an X-radiography technique was carried out using larger meal sizes (voluntary satiating feeding). The work was carried out using the radio-opaque marker, barium sulphate paste (BaSO₄), injected into whole sprats to act as a contrast medium. The marker was held back relative to the food in Arctic char (Salvelinus alpinus, Jorgensen and Jobling, 1988), and in Atlantic cod, Gadus morhua (dos Santos and Jobling, 1991). But Seyhan (1994, unpub. obs.) found that the injected marker remained mixed with the food and the relationship between stomach volume (SV, ml) and body weight (W) for whiting (48 to 696 g, n = 42) was:

\[SV = 0.067 \times W \]

which may be used as a useful predictor of satiation meal size for natural food items.

Materials and Methods

The experimental fish: Whiting (388±50% body weight) were captured live, from the nearby Menai Strait using hook and line or fish trap, or by trawl net using the R/V APriince Madog© in the coastal waters mainly east of Anglesey (mainly 53°E15′-53°E26′ N; 3E46′-4E16′-W) during Autumn (October to December, 1998). They were transported to the Fish Laboratory; Menai Bridge where they were acclimatized at ambient temperature (10±2°C) in 4000L aerated holding tanks for at least 4 weeks prior to the start of experiments.

Plate A: Close up view of partially frozen fresh whiting alimentary tract showing details of the sections containing whole sprats mixed with radio opaque BaSO₄.
Fig. 1: Relation between size of satiation and meal \(S_{\text{max}} \text{ (g wet wt.)} \) and fish size \(W_\text{g (g wet wt.)} \) of whiting feeding on different prey types (temperature range 9.7-19.3°C).

Table 1: Comparison of allometric parameters \(a \) and \(b\) to indicate the variation of satiation meal \(S_{\text{max}} \) of different prey types eaten by whiting of various sizes \(S_{\text{max}} = aW^b\) (Temp. range 9.7-19.3°C).

<table>
<thead>
<tr>
<th>Prey (meal) types</th>
<th>Estimated parameters</th>
<th>(R)</th>
<th>(n) (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squid pieces</td>
<td>0.808±0.143</td>
<td>0.640±0.042</td>
<td>0.814***</td>
</tr>
<tr>
<td>Sprats</td>
<td>0.389±0.212</td>
<td>0.690±0.086</td>
<td>0.780***</td>
</tr>
<tr>
<td>Brown shrimp</td>
<td>0.57±0.147</td>
<td>0.651±0.068</td>
<td>0.726***</td>
</tr>
</tbody>
</table>

Plate B: An X-ray images of 99g fish stomach ingesting 10.4g labelled food taken after 12h since feeding.

Plate D: An X-ray image of 159g fish stomach ingesting 7g labelled food taken after 12h since feeding.

Plate C: An X-ray image of 144g fish stomach ingesting 10.3g labelled food taken after 12h since feeding.

Plate E: An X-ray image of 211g fish stomach ingesting 14.8g labelled food taken after 12h since feeding.
Plate N: An X-ray image of 163g fish stomach ingesting 3.8g labelled food taken after 48h since feeding.

Plate R: An X-ray image of 135g fish stomach ingesting 5.4g labelled food taken after 60h since feeding.

Plate O: An X-ray image of 134g fish stomach ingesting 4.3g labelled food taken after 48h since feeding.

Plate S: An X-ray image of 159g fish stomach ingesting 4.8g labelled food taken after 60h since feeding.

Plate P: An X-ray image of 163g fish stomach ingesting 4.9g labelled food taken after 48h since feeding.

Plate T: An X-ray image of 275g fish stomach ingesting 8.3g labelled food taken after 60h since feeding.

Plate Q: An X-ray image of 276g fish stomach ingesting 27.6g labelled food taken after 48h since feeding.

Plate U: An X-ray image of 288g fish stomach ingesting 25g labelled food taken after 60h since feeding.
Before each experiment, appropriate numbers of healthy fish were transferred into 250L raceway tanks and acclimated for 14 days with test meal (fresh sprats) prior to the start of the experiment.

Preparation of radio opaque meals: X-radiography was used to observe images of food in the alimentary canal of fish at stated times after feeding. A small amount of barium sulphate paste (Ca 0.1–0.15 ml) was injected into the dorsal muscles of whiting common pike, fresh whole sprats using a hypodermic syringe (1ml). It is important to use amounts of barium sulphate in each sprat, which are proportional to its weight to produce similar image densities as the food breaks up. The relationship between the amount of barium sulphate paste that could easily be injected (Fig. 1) and the sprat's body wet weight (Frey size; g); each 1 g of sprat contained 0.1 ± 0.002 ml barium sulphate paste (r = 0.8992, N = 40, P < 0.0001). The sprats containing radio opaque markers were kept frozen prior to start the experiment. All experimental fish were deprived of food for 20h and then offered pre-weighed labelled sprats to satiation. The exact amount eaten was recorded for each fish. A serial slaughter sampling at different time since feeding was adopted in this experiment. In a serial slaughter sampling, at least five fish at each selected time were killed by stunning and destroying the brain. Each fish was X-rayed and the films immediately processed in the adjacent dark room.

The X-ray technique and the film processing protocol: A portable X-ray machine was used. The objects i.e. live or dead fish were placed on a cassette (Agfa containing a screen (Curix Blue C2) and film (Curix RP1 Plus 100 NIF or Curix Blue HC-S Plus 100 NIF, 18 x 24 cm) 30-31 cm from the X-ray source. Exposure times of 0.2–0.3 second produced satisfactory images of food and indigestible solids in the stomach and intestine of the whiting. The X-ray positive images were captured digitally using a Digital Video Camera (Sony HVR1) and later downloaded into a Personal Computer. The images were further enhanced using Paint Shop Pro 6.0.5 software.

Feeding experiment: The aim of this experiment was to estimate the maximum feeding capacity of whiting (C. aest) fed on test diets, squid pieces, whole sprats and whole brown shrimps. After a week in the holding tank, whiting (35–500 g) were individually transferred into 250L tanks. They were acclimated for 7 days with intermittent feeding to satiation with squid pieces (0.8 to 1.8g), sprats (0.7–2.9g) or brown shrimps (0.8–3.3g). Sufficient amounts of food items were weighed and test meals offered to the fish for about 15–20 minutes until the fish showed signs of satiety. Uneaten items were recovered, weighed and amounts of food ingested by each fish calculated. Tests were repeated every 9th over the following days until satiation amount stabilized. Once no temperature control available, the temperature during the course of the experiment (6 months) varied between 8.7–18.3°C.

Results:

X-radiographic observation: The large ellipsoid stomach of whiting can be easily distinguished from the mass of pyloric caeca, intestine and rectum after dissection (Plate A) and in the X-ray films. The stomach is separated from the intestine by the pyloric sphincter that is encircled by the pyloric caeca, and is followed by a narrow, thin-walled intestine leading to an expanded rectum (Plate A). The alimentary tract contains digested sprats and the associated BaSO₄ paste; comparison of stomach contents and X-ray images showed the marker component (BaSO₄) moved along with the test meal digesta and showed similar gastric emptying times. When filled with digesta, the intestinal wall expanded forming a very delicate thin walled tube. Plates B–E showed the X-ray image of small and medium sized whiting 12h after ingesting meals of 0–12% of their body weight (8 to 19 g) of labelled sprats. The stomachs are full, food has already entered the proximal and distal arms of the intestine loop but has not reached the rectum.
In Plates D and especially E, labelled chyme can be seen within parts of the pyloric caeca. Plates F & I are images taken 24h after feeding. Labelled material has reached the rectum in smaller fish (Plates F and G) but food is still present in the stomach (see Plate H). Dissection showed that 35-65% of the original meal was still present at this location in these fish. One fish (198g) ate approximately 75% (9g); Ca 5% of body weight of its estimated maximum capacity (13g). Plate J & K show images after 36h. Stomachs were only partially empty (70% 80% of the meal had moved on) and the labelled digesta fully filled the intestinal tracts with most of it concentrated in the rectal region. The smallest fish in the group (156g) ingested 16g of fresh whole sprats comprised more than 100% of the predicted maximum capacity of stomach (11g) from Seyhan's formula (i.e. equation 1).

After 36h only 31% (6g) of the meal was left in the stomach. Similar excessive ingestion was also displayed by the fish in Plate K (157g), which consumed 16g of sprats leaving 5.4g (34%) in the stomach after 36h. Larger fish (Plates L, M) retained 20-30% of the original meal at this time.

Plates N & Q show that two fish had emptied their stomach within 48h as expected from Seyhan's study. These fish (134 and 163g) had consumed only 4 and 6g of sprats respectively and are comparable with the previous experiments by Seyhan (1994, unpub. observ.). However, the whitting in Plates N and Q had not fully emptied their stomach; 23 - 25% of the meal remained. These whitting accepted large meals - Ca 6 - 10% on their body weight - and required more than 48h to completely empty their stomach. Plates R - U showed that there were still some digesta left in the stomach of several fish even after 80h. Those fish with empty stomachs had ingested around 30-40% of their expected maximum stomach capacities, only Ca 3% of their body weight. The larger fish in Plate U (289g) ingested 26g of sprats (9% bw) and still retained 3g in the stomach after 80h. The fish that took small meals had digesta concentrated mostly in the posterior intestine and rectal regions. Those taking large meals had digesta in all sections of the alimentary. Interestingly, Plate S showed a 159g fish that ingested about 5g of sprats (3% of body weight), which had completely emptied the stomach, depleting all the digesta, but left residues of label in the pyloric caeca. Plates V-Y show the status of digesta in the alimentary tracts after 72h. Small fish (140 and 157g) that had ingested more than 100% of their estimated maximum stomach capacity (13.2 g, 7 - 9% bw) had apparently emptied their stomach, leaving most of the digesta concentrated in the posterior intestine and rectal region. Similar fish (173 and 183g) that ingested more than 10% of their body weight (18g) or 158% of the estimated maximum stomach capacities. Digested small amount of digesta in the stomach had 20 - 25% of the total amount ingested. Whitting which consumed more than 10% bw meals had gastric emptying times greater than 72h.

Modeling of satiation feeding: An initial modeling of satiation feeding is important to estimate the feed intake capability in fish of various sizes (Table 1 and Fig. 1). For whitting of a given size, the largest weight and volume ingested occurs when they are fed on squid pieces, followed closely by sprats whilst ingestion of brown shrimps was lower. Satiation amount (Swi) is increased allometrically with fish weight (W) as: Swi = aWb, where b = 0.64 - 0.7. The variations in "a" indicated that different packing factors do exist for different prey species when fed to whitting. A whitting of 500g, which Seyhan considered should have a stomach volume of 33.5 ml, ingested 32.5g of squid, 28.4g of sprat but only 14.7g of brown shrimp. However, smaller whitting ate larger meals than predicted from Seyhan's model: a 50g fish typically eats 7g of squid but has a predicted stomach volume of only half this size. So, that the stomach capacity is allometrically with fish size rather than the linear relationship suggested by Seyhan. Therefore his original data set can be re-described by fitting a power equation but fixing the average value of b = 0.62 (found from the present study) as: Stomach volume = 0.438W0.62 and the 95% confidence limits of the fit reduce to 31%. Whitting of 50g bw would have on average a stomach volume of 8 ± 1.8ml and 600g fish 27 ± 8.1 ml.

Discussion

In this study, the disappearance from the X-ray images of the whitting of the radio-opaque marker (BaSO₄) injected into the prey closely followed the change in stomach contents obtained by dissection. This indicates that this technique is useful as a tool to observe both food intake and the gastric emptying process in the whitting. However, the use of barium sulphate paste within the natural food may itself affect the digestion rate of the item. Great care is required during injection of the sprat to retain the measured amount of paste in the sprat body cavity due to its delicate tissues. The problem was minimized by injecting an amount in proportion to the sprat weight.

During feeding, the experimental fish were hand fed (ad libitum) to satiation with partially frozen sprats and, as long as the fish quickly swallowed the whole sprats, this helps to minimize loss of the marker in the surrounding water. Once the semi-frozen sprat is in the stomach, digestion begins with secretion of acidic gastric juices; the marker mixes well with the sprat tissue to form radio-opaque chyme. The estimation of maximum stomach capacity using the linear relationship suggested by Seyhan (1994, unpub. observ.) based on distension seems to underestimate the satiation amounts for whitting in this study. Several whitting exceeded the predicted maximum by up to 60%. This may suggest individual variation in stomach size or perhaps an allometric rather than isometric relation between volume and fish weight. Jobling (1981) reviewed evidence that satiation amount increases with body weight raised to a power (0.7-0.8), indicating that smaller fish eat relatively more (g¹ bw) than larger fish.

One of the aims of this study was to examine the previous workers (Seyhan, 1994, unpub. observ.; Seyhan et al., 1998) that gastric emptying time remained constant as meal size increased, since the work of Bromley (1988) contradicts this. Both Bromley's fish, and those in the present study, ate much larger voluntary meals than those Seyhan's fish and in both cases gastric emptying time was prolonged well beyond that reported by Seyhan et al., 1998. Small meals were processed at the rate following the equation 1 as predicted by Seyhan (1994, unpub. observ.). His finding that gastric emptying rate (GER) is directly proportional to meal size, thereby maintaining constant GET, may only apply to small meals (<3% bw) for whitting.

In conclusions, the use of a dispersive type radio opaque marker (Barium Sulphate) was found suitable to investigate the gastric emptying time in whitting. The result also showed that the pattern of feed intakes by various sizes of fish denoted an allometric relationship between stomach volume and the fish size. The linear term of gastric emptying process may only suitable to describe the gastric emptying of fish ingesting the small meal (< 3% bw).

Acknowledgments

We are indebted to Ministry of Science and Technology Malaysia (HRD) and University Kebangsaan Malaysia for sponsoring the research project throughout the study. Highest gratitude are also due to all the technical staff of Nuffield Fish Laboratory, for their supports.

References

