The Population Abundance of *Aphis gossypii* Glover (Hemiptera: Aphididae) in Different Chilli (*Capsicum annum*) Planting Densities

H. T. Lee, A. B. Idris and M. N. Mohamad Roff
School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor D. E., Malaysia
1Malaysian Agricultural Research Development Institute, Station Jalan Kebun, P. O. Box 186, GPO 41720 Klang, Selangor, Malaysia

Abstract: The population abundance of aphid, *Aphis gossypii* Glover in different chilli, *Capsicum annum*, planting densities (plant spacing) was assessed. Results indicated that aphid population (alate and apterous) was significantly higher (P < 0.05) in the dense planting than in the sparse chilli planting density. The mean total number of aphids per plant was significantly higher (P < 0.05) in the lower portion of plant canopy than in the middle and upper portion of plant canopies of the 40 x 40 cm² planting space only. Plant spacing of 80 x 60 cm² seemed to be the optimum plant density that could reduce aphid population.

Key words: *Aphis gossypii*, chilli, population abundance

Introduction
The *Aphis gossypii* Glover (Hemiptera: Aphididae) is an important insect pest of chilli (*Capsicum annum*) in Malaysia. This aphid can cause serious damage and a main vector of virus diseases of chilli plants, and a significant yield loss will incur if left unchecked (Hussein and Abdul Samad, 1993). The plant density, which is a function of plant spacing per unit area, can exert an effect on insect pest abundance (Root, 1973). For example a reduction in plant density can reduce pest numbers (A’Brook, 1964, 1968; Farrell, 1976; Mayse, 1978; Tukahirva and Coaker, 1982; Trocoliar and Boethel, 1984). On the other hand, an increase in plant density will result in abundance of the pest numbers. Higher insect numbers in dense plantings can be connected with less natural enemies and high quantity of natural resources (food plants). However, the number of diamondback moth (DBM), *Plutella xylostella* (L.) (Lepidoptera: Plutellidae), larvae and parasitism rate *Dadegeia insulare* (Hymenoptera: Ichneumonidae) on DBM larvae were not significantly influenced by the density of cabbage plants (Idris and Grahas, 2001). This study was aimed to investigate the effects of various chilli densities on the population abundance of *A. gossypii*. Result of the study could help us in selecting the appropriate chilli plant density per unit area that do not favor development and infestation of *A. gossypii* on crops such as chilli.

Materials and Methods
This study was conducted at MARDI Research Station Jalan Kebun, Klang, Selangor, Malaysia from April to June 2001. Five treatments (plant densities; spacing between plant were 0.4 x 0.4, 0.5 x 0.5, 0.6 x 0.6, 0.7 x 0.7 and 0.8 x 0.8 cm² for high, medium and low densities respectively) were tested in a 1:1:1:1:1 field. Each experimental unit (plot) was 6.0 x 6.0 cm² and treatments were arranged in a randomized complete block design. One-moth old chilli (*Capsicum annum*) plant of variety MC 11 was transplanted manually from the greenhouse to the field on 13 April 2001. The fertilizer (15:15:15, N:P:K) was manually applied immediately after transplanting. Plots were kept free of weeds by applying herbiocide (glyphosate, a.i. = 1.8 kg/ha) before transplanting and manually after transplanting. A circular yellow water-pan trap filled with water and detergent was placed in middle of each plot to trap alate aphids. The traps were supported with a wooden stakes and adjusted to just above of chilli canopy level from time to time. The data collected were numbers of apterous aphid per plant per season and number of alate aphid per season. A one-way analysis of variance was used to analysis the data. Means of the data were separated by Tukey’s test at α = 0.05 (Abacus Concept, 1991).

Results and Discussion
There was a significant difference (F = 3.9; df = 4, 1019; P = 0.004) in the mean total number of alate aphids trapped per plot in among the treatments (Fig. 1). The number of alate aphid trapped was significantly lower (P > 0.05) in plots where chilli was planted in a treatment of 70 x 70 cm² planting space compared to 40 x 40 and 50 x 50 cm² planting space. The highest number of alate aphid trapped was in the plot of 50 x 60 cm² planting space but it was not different with that of 40 x 40 cm² planting space. This suggests that alate aphid had selectively alighted on plot of higher resource (chilli plants) concentration than plot with low resource concentration (Root, 1973). The alighting of alate aphid may be influenced by the contrast between plant and soil background (A’Brook, 1968). In this study, the contrast between chilli plant and soil background for the high plant densities (close spacing) still exist even up to the beginning of harvesting time (2 months after transplanting). As such this had influenced the total number of alate aphid collected per season. The mean total number of apterous aphid per plant was also found to be significantly different among the treatments (F = 3.7; df = 4, 1019; P = 0.005) (Fig. 1). The number of aphid was significantly higher (P < 0.05) in lower plant densities (40 x 40 cm² and 50 x 60 cm²) than in the higher plant densities (60 x 60 cm² and 70 x 70 cm²). This tends to agree with that the resource concentration hypothesis proposed by Root (1973). Although plant quality may be lower in dense planting than in the sparse planting (Fox et al., 1990), result showed that apterous aphid is more abundance in the dense planting than in the sparse planting (Fig. 1). Higher apterous aphids in the dense planting may also have resulted in producing the higher number of apterous aphid per plant in dense plant spacing than in sparse planting of chilli. The number of apterous aphid per plant was also found to be not significantly different (F = 2.2; df = 4, 1019; P = 0.104) among canopies per plant in all the treatments except for treatments 40 x 40 cm² (Fig. 2). The number of aphid was significantly higher (P < 0.05) in lower part of plant canopy than in the middle and upper part of plant canopies. Although statistically there was no significant different, the number of apterous aphids was relatively higher at the bottom than at the middle or the top of the plant canopy in 60 x 60, 60 x 60 and 70 x 70 cm² treatments. In the 80 x 80 cm² plant spacing, however, there was a relatively more aphid observed in upper part of plant canopy than other part of plant canopies. There was no significant
Fig. 1: Mean number of alate and apterous *Aphis gossypii* per plant in five different plant densities from April to June 2001. Means in the same curve with similar letters per line were not significantly different.

Fig. 2: Mean number of alate *Aphis gossypii* per plant canopy in five different chilli plant densities from April to June 2001. Interaction ($F=3.37; df=8, 659; P=0.404$) between plant canopy height and treatments in influencing the number of apterous aphid per canopy. The reason for more aphids in the lower part of plant canopy is probably due to the favorable microclimates for an aphid and not for its natural enemies (Delobel, 1981; Coaker, 1987). Results of this study also tend to agree with the results of previous studies conducted by Idris et al. (2001), Idris and Mohamad Roff (1999, 2002).

Although there was no significant different in the mean total number of alate and apterous aphid both in 60x60 and 70 x70 cm2 plant spacing (low plant density), the plant spacing of 60 x60 cm2 seemed to be the optimum plant spacing of chilli plants that expected could reduce the population of alate and apterous aphids. However, further study on the effects of plant density on the alate and apterous aphid abundance should be conducted under different field setting, location, and regions before specific or general recommendation could be made.

References

