Effect of NaCl on Heat Tolerance of *Enterococcus faecium* and *Enterococcus faecalis*

Muhtaq Ahmad, ¹ David G. Smith and ²Shahid Mahboob

¹Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad-13100, Pakistan
²Post-Graduate Department of Zoology, Government College, Faisalabad, Pakistan

Abstract: The effect of NaCl on heat tolerance of Enterococcus faecium BAR1 and Enterococcus faecalis MI1 was determined at 55, 60 and 62.5°C for half an hour. Cells of both isolates were grown in Brain Heart Infusion broth containing 6.5% NaCl. Exponential phase cells were used as inoculants. Cells of both isolates were found resistant to heat treatment as compared with cells grown in BHI broth without presence of salt. The decimal reduction times (D-values) were determined by 1 log fall in viable count. Both isolates showed similar results at 55°C but at 60°C *E. faecium* MI1 showed higher D-value than *E. faecium* BAR1. At 62.5°C *E. Faecium* BAR1 was found more tolerant to heat treatment than *E. faecalis* MI1. Experiments showed that the presence of salt in the growth medium induces more heat tolerance in enterococci than the cells grown in normal medium.

Key words: Enterococci, NaCl, D-value, heat tolerance

Introduction
The enterococci are of great interest due to their characteristics of being, thermoresistant, among the non-sporeulated microorganisms (Perez et al., 1982). The enterococci are the major group of heat resistant organism that survive the processing of meat products (Gordon and Ahmad, 1991). Both *Enterococcus faecium* and *Enterococcus faecalis* have been implicated in the spoilage of meat products (Bell and DeLacy, 1984; Magnus et al., 1988). The enterococci are widely distributed (Perez et al., 1982) and they may be etiologic agents of food poisoning (Gordon and Ahmad, 1991). The enterococci can survive in media at 60°C for 30 minutes. They can grow in media that contain 6.5% NaCl (Kaye, 1982). The presence of high concentrations of NaCl causes many organisms difficulties in regulating and maintaining cell turgor (Cummings and Gilmour, 1996). The 6.5% NaCl tolerance test is commonly used for presumptive identification of enterococci (Chang, 1991). Sodium chloride treatment was found to be very effective in the induction of general stress proteins in Bacillus subtilis: the additions of NaCl to exponentially growing cells enhance the synthesis of general stress proteins, whereas specific heat shock proteins are not induced (Hecker et al., 1988). General stress proteins are synthesized with very high intensity soon after the addition of NaCl (6% w/v). Many general stress proteins have a low molecular mass (Völker et al., 1992). A mild heat stress appears to be very effective in the induction of tolerance against lethal salt concentrations (Völker et al., 1992).

It was shown that Lactobacillus plantarum, the strain not producing bacteriocin was more tolerant to salt than the strain producing bacteriocin, because the bacteriocin producing strain was unable to use lactate which is accumulated during glucose metabolism. The oxygen-dependent utilization of lactate is important as it provides an ATP yield from pyruvate oxidation and acetate kinase enzymes when other substrates are exhausted. This energy yield mechanism is absent in the strain producing bacteriocin (Montano et al., 1993). Salt affects the growth and metabolism of Lactobacillus associated in food fermentation. It has been shown that NaCl reduces the acetate production by Lactobacillus plantarum (Montano et al., 1993). The physiology of the bacterial cell can be affected by large increases in external salt; the increasing levels of salt usually change the composition of the cell membrane and give rise to the production or accumulation of organic compounds to maintain positive turgor pressure. Many halotolerant bacteria require low levels of NaCl to produce a gradient across the cytoplasmic membrane. The Na⁺ gradients are important in the process of solute transport (Cummings and Gilmour, 1996). In this study the effect of NaCl on heat tolerance of barley isolate *E. faecium* BAR1, and hospital isolate *E. faecalis* MI1 was investigated.

Materials and Methods
Organisms and growth conditions: *E. faecium* BAR1 was isolated from malted barley seeds provided by Dr. David G. Smith Department of Biology Darwin Building University College London Gower Street London WC1E 6. *E. faecalis* MI1 was obtained from Microbiology Laboratory University College Hospital U.K. Both isolates were identified by API 20 STREP kits. Stock cultures were maintained in Microbank cryovials and stored at -70°C. Subcultures required for experimental work were kept in refrigerator. Fresh subcultures were used in each experiment. Both isolates were grown in Brain Heart Infusion (BHI, Oxoid CM 225) broth containing 6.5% NaCl to exponential phase with shaking at 37°C.

Determination for heat tolerance: Cultures for heat tolerance determinations were grown in BHI broth containing 6.5% NaCl. A 0.1 mL sample of exponential phase cells was diluted in 25mL Maximum Recovery Diluent (MRD, Oxoid CM 733) placed at 55°C, 60 and 62.5°C. One mL sample was removed from recovery diluent after 5 minutes interval for half an hour and diluted into 9 mL MRD at room temperature and further dilutions were made by factors of 10 upto 6 dilutions. A 20ul sample was removed from each dilution and spotted on Brain Heart Infusion (BHI, Oxoid CM 375) agar. When plates became dry, all the plates were incubated at 37°C for 24 h. The colonies were counted and the number of survivors was plotted on a logarithmic scale against time of heat treatment. For control experiment, cells were grown to exponential phase in BHI broth at 37°C under shaking conditions without addition of salt and treated at 62.5°C. From the survival curves the D-value was determined. The D-value is the time taken at a particular temperature for a 1 log fall in viable count.

Results and Discussion
In this study barley isolate *E. faecium* BAR1, and hospital isolate *E. faecalis* MI1 were selected to investigate the heat tolerance of exponential phase cells grown in BHI broth containing 6.5% NaCl. The heat tolerance was determined at 55, 60 and 62.5°C. It was found that the cells of both isolates were resistant to heat treatments as compared with the control experiment in which the cells were grown to exponential phase at 37°C without addition of salt and treated at 62.5°C. At 55, 60 and 62.5°C, the cells of *E. faecium* BAR1, survived for more than half an hour (Fig. 1). At 60°C *E. faecium* BAR1, was found less tolerant to heat (D-value = 9.6 min) than *E. faecalis* MI1 (D-value = 12.0 min). At 62.5°C *E. faecium* BAR1, was found more tolerant to heat (D-value = 7.6 min)
Ahmad et al.: Enterococci, NaCl, D-value, heat tolerance

Table 1: D-values (minutes) for heat treatment exponential phase cells of enterococci grown in BH broth containing 6.5% NaCl

<table>
<thead>
<tr>
<th>Strains</th>
<th>D-values (min.)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>E. faecium BAR1</td>
<td>> 30.0</td>
<td>> 30.0</td>
</tr>
<tr>
<td>E. faecalis M1</td>
<td>> 30.0</td>
<td>> 30.0</td>
</tr>
</tbody>
</table>

Fig 1: Heat tolerance of exponential cells of barley isolate E. faecium BAR1 grown at 37°C in BH broth containing 6.5% NaCl. Heat tolerance was determined at 55, 60 and 62.5°C for half an hour. In control experiment exponentially grown cells at 37°C were treated at 62.5°C.

Fig 2: Heat tolerance of exponential cells of hospital isolate E. faecalis M1 grown at 37°C in BH broth containing 6.5% NaCl. Heat tolerance was determined at 55, 60 and 62.5°C for half an hour. In control experiment exponentially grown cells at 37°C were treated at 62.5°C.

salt specific proteins as well as general stress proteins (Völker et al., 1992). Hecker et al. (1988) reported that salt stress enhances the synthesis of general stress proteins in bacteria. The induction of stress proteins is the response of the cells to growth limiting conditions (Völker et al., 1994). In the case of Bacillus subtilis cells pre-treated with lower salt concentrations for 30 min are able to survive the lethal salt concentrations. The stress proteins protect the cells from damage by lethal salt stress. Salt stressed cells are killed more slowly if they are treated at lethal temperatures (Völker et al., 1992). B. subtilis is a soil living bacterium and it has to cope with adverse conditions such as desiccation and hypersalinity. It is necessary for soil living bacterial like B. subtilis to possess an adaptation system which protects them against high salinity in the environment (Kunst and Rapoport, 1995). Halomonas species are able to tolerate high levels of NaCl concentrations. Many moderate halophiles require NaCl in the growth media. Halomonas species require up to 75mM NaCl (Cummings and Gilmour, 1996).

When salt shock induces stress tolerance, thermostability is found to be increased in the presence or absence of protein synthesis. Salt shock did not induce synthesis of proteins which are induced by heat shock. Cells with or without protein synthesis show same level of thermostability. It indicates that heat shock protein synthesis is not necessary for salt shock induced thermostability (Lewise et al., 1998).

Acknowledgment
Mushtaq Ahmad is thankful to Zahid Hussan Malik, Dr. Muhammad Aaz Ch. for useful discussion and inspiration and especially thankful to Muhammad Iqbal Malik for the preparation manuscript.

References