Effect of an Early Feed Restriction of Broiler’s on Productive Performance and Carcass Quality

Salim Salem Al-Taleb
Department of Animal Production, College of Agriculture, Mutah University, Jordan

Abstract: An experiment was carried out with straight run broiler chicks (lohman) in which diets from 7 to 14 days of age were substituted 0, 5, 10 and 15% sand respectively. Each diet was tested with 4 replicate floor pens each containing 50 chicks. The results indicated that dietary substituted with sand resulted in a significant (p<0.05) reduction in body weight at the age of 14 days. After the return to adlib feeding the birds were able to fully recover body weight depression, the body weight of birds from all restricted group was significantly (p<0.05) higher than that of the control group at the age of 49 days of age. However, there was a numerical but not significant improvement in feed conversion ratio as a result of early feed restriction. Feed restriction had variable effect on carcass composition at 14 and 49 days of age. Similar trend was observed with respect to carcass cuts at 49 days of age. Earlier feed restriction significantly (p<0.05) reduced abdominal fat pad weight compared to that of the control group.

Key words: Feed restriction, compensatory growth, Broilers, carcass cut, carcass composition

Introduction
The increase in growth rate of modern broiler hybrids has been associated with increased fat deposition (Plavnik et al., 1986; Yu and Robinson, 1992) and high incidence of skeletal and metabolic disorders (Lesson and Summers, 1988). These situation most commonly occur with broilers that consume feed ad lib (Pasternak and Shalev, 1983). Studies have shown the potential for early-life feed restriction followed by full-feeding to reduce the above mentioned problems.

During the period of feed restriction, growth rate is slower than that of birds given free access to food, but when access to food is again unrestricted, the birds exhibit an accelerated rate of weight gain typical of compensatory growth (Plavnik and Hurwitz, 1985; Calvert et al., 1989; Jones and Farrell, 1992a). The birds apparently utilise food more efficiently following the period of restricted feeding because their overall feed intake and feed conversion ratio are lower than that of full-fed birds.

The present experiment was conducted to study the effect of early life feed restriction imposed by diet substituted followed by full-feeding until marketing age on productive performance and carcass parts of broiler chicks.
Materials and Methods

The present study was conducted using unsexed broiler chick (Lohman). 800 day-old chicks were allocated at random to 4 dietary treatments with 4 replicates per treatment. Each replicate consisted of 50 chicks each. The chicks were raised on deep litter with continuous lighting through-out the experimental period.

At the age of 7 day all chicks were individually weighed and re-distributed to the 4 experimental treatments in order to equalize the mean body weight between treatments.

Feed restriction was imposed from the age of 7-14 days by means of substituted the starter diet (Table 1) with sand to produce the following treatments:

\[T_1 \text{ - Control - Full feeding from day-old-49 days of age.} \]
\[T_2 \text{ - Diet substituted with 5 \% wt/wt sand} \]
\[T_3 \text{ - Diet substituted with 10 \% wt/wt sand.} \]
\[T_4 \text{ - Diet substituted with 15 \% wt/wt sand.} \]

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Starter %</th>
<th>Finisher %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>63.0</td>
<td>72.0</td>
</tr>
<tr>
<td>Soybean meal 44%</td>
<td>27.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Meat meal</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Fish meal</td>
<td>4.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Salt</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Vitamin and minerals premix *</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Calculated chemical composition

A. Starter:

- Metabolizable Energy: 3050 Kcal/Kg.
- Crude Protein: 22.6\%
- Ether Extract: 2.638\%
- Crude fiber: 2.6\%
- Meth. + Cyst. (\%): 0.9, 0.65
- Ca\%: 1.15
- Available P\%: 0.45

B. Finisher:

- Metabolizable Energy: 3140 Kcal/Kg.
- Crude Protein: 20\%
- Ether Extract: 2.658\%
- Crude fiber: 3.1\%
- Meth. + Cyst. (\%): 0.9, 0.65
- Ca\%: 1.15
- Available P\%: 0.45

*Every 1 gram of premix contained:

- Vitamin A = 1500 IU
- Vitamin D_3 = 150 IU
- Vitamin E = 200 \mu g
- Vitamin B_1 = 200 \mu g
- Vitamin B_2 = 200 \mu g
- Vitamin B_6 = 300 \mu g
- Vitamin K_3 = 200 \mu g
- Folic acid = 30 \mu g
- Panth. Acid = 550 \mu g
- Nicotinamide = 1 mg.

Minerals:

- Fe_3O_4 = 550 \mu g
- Mn_2SO_4 = 450 \mu g
- Zn_2SO_4 = 230 \mu g
- Cu_2SO_4 = 56 \mu g
- CO_3CO_3 = 14 \mu g
At the end of the feed restriction period, the chicks were returned to full feeding till marketing at the age of 49 days.

At the age of 14 and 49 days of age 2 and 4 birds were taken to randomly from each replicate from all dietary treatments. After slaughtering the birds. Samples of meat from the breast and thigh were taken for protein and fat analyses (A.O.A.C. 1984). Further more, Gizzard, heart and liver were removed to determine their weight. At the age of 49 days, dressing percentage and the weight of major cuts were measured.

The experiment was arranged as completely randomized design with pen as the experimental unit. Data for response variables in terms of growth parameters and carcass characteristics were examined (SAS, 1988), treatments means were assessed for significance using the Duncan multiple F-test (Duncan, 1955).

Results and Discussion

Dietary substituted with sand (T,, T,, and T,) resulted in a significant (p<0.05) reduction in body weight at 14 days when compared with that of the control group. Although the maximum growth depression reached about 9.3% (T,), body weight at 49 days of age for birds from feed restricted groups (T,, T,, and T,) was significantly (p<0.05) higher than that of birds from the control group (Table 2). These results are in agreement with those obtained by Susbilla et al., 1994; Zubair and Lesson, 1994; Lesson et al., 1996; Saleh et al., 1996, their results indicated that birds subjected to a period of feed restriction were able to compensate for the reduction in body weight when returned to full feeding. Feed conversion ratio (FCR) at the age of 49 days did not differ significantly among all the experimental groups (Table 2). But FCR for the feed restricted groups (T,, T,, and T,) was numerically better than of birds from the control group, the difference ranged between 6.6-7.1%. This apparent improvement in FCR may be of importance to the poultry producer, it means that restricted birds required less feed to produced one unit of weight gain.

Chemical analyses (Table 3) at the end of the feed restriction period (14 days of age) indicated that fat percentage of dry matter in breast meat was significantly higher (p<0.05) in birds from T, (15% sand substituted) when compared with that of birds from all other treatments.

Table 2: The effect of varying levels of feed restriction 7-14 days of age followed by full feeding on the productive performance of broilers at 49 days of age

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Day old</th>
<th>7 days old</th>
<th>14 days old</th>
<th>49 days old</th>
<th>Feed Conversion ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g feed: g gain Feed intake day 7-14</td>
</tr>
<tr>
<td>T, - control</td>
<td>41.1</td>
<td>178.2</td>
<td>443.8a</td>
<td>2325a</td>
<td>2.26</td>
</tr>
<tr>
<td>T, -5% sand</td>
<td>41.2</td>
<td>178.5</td>
<td>422.5b</td>
<td>2475b</td>
<td>2.12</td>
</tr>
<tr>
<td>T, -10% sand</td>
<td>41.0</td>
<td>178.3</td>
<td>415.5b</td>
<td>2500c</td>
<td>2.1</td>
</tr>
<tr>
<td>T, -15% sand</td>
<td>41.3</td>
<td>178.0</td>
<td>402.5c</td>
<td>2500c</td>
<td>2.1</td>
</tr>
<tr>
<td>Level of significance</td>
<td>N.S.</td>
<td>N.S.</td>
<td>p < 0.05</td>
<td>p < 0.05</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

* In each column, mean not bearing similar superscripts differ significantly (P<0.05).
** Not significant.
Table 3: The effect of varying levels of feed restriction from 7-14 days of age followed by full feeding on the chemical composition of various carcass parts

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Breasts Protein</th>
<th>Thighs Protein</th>
<th>Liver Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 days</td>
<td>49 days</td>
<td>14 days</td>
</tr>
<tr>
<td>T₁ Control</td>
<td>86.0b</td>
<td>86.9b</td>
<td>7.25b</td>
</tr>
<tr>
<td>T₂ 5% sand</td>
<td>86.6b</td>
<td>86.9b</td>
<td>7.4b</td>
</tr>
<tr>
<td>T₃ 10% sand</td>
<td>88.5a</td>
<td>88.0a</td>
<td>7.7b</td>
</tr>
<tr>
<td>T₄ 15% sand</td>
<td>86.9a</td>
<td>88.1a</td>
<td>8.1a</td>
</tr>
</tbody>
</table>

Level of significance: (P<0.05) (P<0.05) (P<0.05) (P<0.05) (P<0.05) (P<0.05) (P<0.05) (P<0.05) NS (P<0.05) (P<0.05) (P<0.05) NS

*In each column, means not bearing similar superscripts differ significantly (P<0.05).

Table 4: The effect of varying levels of feed restrictions from 7-14 days of age followed by full feeding on the yield of carcass cuts at marketing age

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Whole leg (Thigh+drum stick)</th>
<th>Breast</th>
<th>Back</th>
<th>Wings</th>
<th>Neck</th>
<th>Abdominal fat pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ control</td>
<td>541.33b*</td>
<td>539.67c</td>
<td>366.17a</td>
<td>191.0b</td>
<td>118.83a</td>
<td>60.83a</td>
</tr>
<tr>
<td>T₂ 5% sand</td>
<td>553.00a</td>
<td>588.83b</td>
<td>385.0b</td>
<td>193.33a</td>
<td>116.5b</td>
<td>49.0b</td>
</tr>
<tr>
<td>T₃ 10% sand</td>
<td>559.67c</td>
<td>618.67a</td>
<td>332.5c</td>
<td>186.83c</td>
<td>112.33c</td>
<td>46.5c</td>
</tr>
<tr>
<td>T₄ 15% sand</td>
<td>550.67a</td>
<td>612.33a</td>
<td>333.33c</td>
<td>184.5c</td>
<td>116.0b</td>
<td>43.17c</td>
</tr>
</tbody>
</table>

*In each column, means not bearing similar superscripts differ significantly (P<0.05).

(T₁, T₂ and T₃), While fat percentage in thigh meat was significantly (P<0.05) lower for birds from T₂ and T₃ when compared with that of birds from T₁ and T₄. However, fat percentage in the liver of birds from T₁ and T₄ was significantly higher (P<0.05) than that of birds from T₂ and T₃. As with respect to protein level, the results indicated that breast meat contained significantly (P<0.05) higher protein in birds from T₃ and T₄ compared with that of birds from T₁ and T₂, while there was a significant decrease (P<0.05) in protein level in the thigh meat of birds from T₁ compared to other experimental groups. However, the liver of birds from T₁ contained significantly (P<0.05) more protein when compared with that of birds from T₁, T₂ and T₄. When the same parameters were determined at the age of 49 days, the results showed that breast meat of birds from T₂ and T₄ and thigh meat of birds from T₃ and liver of birds from T₄ contained significantly (P<0.05) more protein compared with that of birds from other treatments. However, no significant difference was observed in fat percentage among all dietary treatments. These results confirm the finding of Zubair and Lesson (1994) who showed that different level of feed restriction had varying effects on chemical analysis of carcass components.

When examining the results concerning carcass yield and carcass cuts across treatments at the age of 49 days, it was indicated that feed restriction programs employed in the present study had varying effects on these parameters (Table 4). However, it is interesting to note that feed
restriction programs significantly (P<0.05) reduced the size of abdominal fat pad when compared with that of the control group. These findings are of importance to the broiler producers because fat deposition is considered the most expensive way of using dietary energy. The above mentioned results are supported by the findings of Susbilla et al. (1994).

References