Pharmacokinetics of Amoxycillin in Camel

Mohammed H. Al-Nazawi
Department of Physiology, Biochemistry and Pharmacology,
College of Veterinary Medicine and Animal Resources, King Faisal University,
P.O. Box 3498, Al-Ahsa 31982, Saudi Arabia

Abstract: The disposition of amoxycillin following intravenous (IV) and oral administration in camel was studied. The kinetic behavior of the drug was best described by two compartment open model. The half-life of distribution was 3.6±0.36 min for IV and 15.3±1.9 min for oral dosing. The half-life of elimination was 69.3±2.6 min for IV and 80.0±3.4 min for oral dosing. The mean peak plasma concentration after oral administration was 2.11±8.3 µg mL⁻¹ detected at 2 h after drug administration and the bioavailability was 23.3%.

Key words: Camel, Pharmacokinetic, intravenous, oral, amoxycillin

INTRODUCTION

Antibiotics play an important role in the treatment of various infectious diseases in man and animals. An effective concentration of antibiotic must be available at the focus of infection and maintained for adequate time[1]. Amoxycillin is semisynthetic penicillin with a broad spectrum of antibacterial activity (Gram-positive and Gram-negative organisms) similar to that of ampicillin[3], over which it has been shown to have important advantages. In particular, when given orally in a number of species, its bioavailability is approximately twice that of ampicillin and much higher serum concentrations are obtained[5]. The influence of food on the oral absorption of amoxicillin has been reviewed by Eshelman and Spyker[6]. They showed that the absorption of ampicillin, but not of amoxycillin, is reduced in the presence of food. It has also been shown that certain important Gram negative bacilli (including Escherichia coli) are destroyed more rapidly by amoxycillin and that experimental infections respond more quickly to amoxycillin than to ampicillin[6-9]. Amoxycillin is the most frequently prescribed agent for the oral treatment of respiratory tract infections[8]. Information regarding to pharmacokinetics of amoxycillin and its residues have not been studied in arabian camels. This study was planned to investigate pharmacokinetic of amoxycillin in camels.

Animals were not fasted prior to administration of the drug. At least one week was allowed to elapse between each experiment.

Experiment 1: During this experiment amoxycillin as a 5% aqueous solution (Clamoxyl, Smith kline Beecham, Tadworth, UK) at a dose of 10 mg kg⁻¹ body weight was administered intravenously into the right Jugular Vein. Blood samples were collected serially in sterile heparinized tubes by venipuncture of the left Jugular Vein at 0, 5, 10, 15, 30 min and at 2, 3, 4, 6 and 12 h after amoxycillin administration. The blood samples were centrifuged at 800 x g for 10 min, plasma separated and stored at −30°C until analysis.

Experiment 2: During this experiment, amoxycillin trihydrate as 5% suspension (Clamoxyl Drops, Smith kline Beecham, Tadworth, UK) was administered via orogastric tube at a dose of 20 mg kg⁻¹ body weight. Fifty milliliter of water was administered after the drug to wash out the orogastric tube before withdrawing it. Blood samples were collected and handled as described before.

Assay of amoxicillin: Concentrations of TAP in plasma samples were determined by using an agar plate diffusion method[9], using Bacillus subtilis (ATCC 6633) as test organism, growing on Muller-Hinton agar (Mast Group Ltd Mersyside, UK). Wells of 8 mm in diameter containing 25 mL seeded agar were prepared and filled with either the test sample or amoxicillin standards. Standard solutions were prepared in antibiotic-free poled camel serum by appropriate serial dilutions of powdered amoxicillin standard. Each assay of standard and unknown was carried out in triplicate. The plate was kept at room temperature for 24 h. Mean zone diameters were measured.
and plasma concentrations were determined using the curve constructed from the results of standard samples. The intra-assay coefficient of variation for amoxicillin in control plasma fortified with known concentrations was 6.9% for the range of 0.10-15 µg mL⁻¹. A linear relationship existed between the zone of inhibition and TAP concentrations in plasma with a correlation coefficient of 0.99. The detecting limit of amoxicillin in plasma was 0.10 µg mL⁻¹.

Pharmacokinetic calculations: A computerized curve- stripping program (R Strip, Miroo Math Research, Saint Louis, MO, USA) was used to analyze the concentration-time curves for each animal. The relevant pharmacokinetics parameters were calculated using conventional equations associated with compartmental analysis[9], where volume of distribution equals dose/intercept at time zero. Kinetic parameters of amoxicillin in camel were compared using Student's t-test[10]. The probability value p<0.05 was considered significant.

RESULTS

The disposition curves describing the decline in plasma concentrations of amoxicillin after IV and oral administration (Fig. 1). The kinetic behavior of the drug was best described by an open two-compartment open model. The initial part of the curve describing the disappearance of amoxicillin from plasma was steep reflecting the processes involved in distribution of the drug from central to peripheral compartment. The value of half-life of distribution was only 3.61±0.36 min for IV and 15.3±1.9 min for oral dosing (Table 1 and 2). The later portion of the curve reflected the elimination of the injected amoxicillin from the central compartment. The elimination half-life was 69.3±2.6 min for IV and 80.0±3.4 min for oral dosing.

Table 1: Pharmacokinetic parameters of amoxicillin given at a single intravenous dose of 10 mg kg⁻¹ body weight to healthy camels. (n = 10)

<table>
<thead>
<tr>
<th>Kinetic parameters</th>
<th>Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (µg mL⁻¹)</td>
<td>26.17±9.1</td>
</tr>
<tr>
<td>B (µg mL⁻¹)</td>
<td>16.26±14.1</td>
</tr>
<tr>
<td>α (min⁻¹)</td>
<td>0.190±0.006</td>
</tr>
<tr>
<td>β (min⁻¹)</td>
<td>0.010±0.0002</td>
</tr>
<tr>
<td>t₁/₂ (α) (min)</td>
<td>3.64±0.36</td>
</tr>
<tr>
<td>t₁/₂ (β) (min)</td>
<td>69.3±0.26</td>
</tr>
<tr>
<td>V₁ (area) [mL kg⁻¹]</td>
<td>543.4±0.13.2</td>
</tr>
<tr>
<td>Clr (mL/min/kg)</td>
<td>5.43±0.312</td>
</tr>
<tr>
<td>AUC (µg h/mL)</td>
<td>3.101±0.31</td>
</tr>
</tbody>
</table>

A = Zero-time intercept of distribution phase; B = Zero-time intercept of elimination phase; α = Distribution constant; β = Elimination constant; t₁/₂ (α) = Half-life of distribution phase; t₁/₂ (β) = Half-life of elimination phase; V₁ (area) = Volume of drug distribution; Clr = Total body clearance of the drug; AUC = Area under the concentration-time curve

Fig. 1: Mean semi-log serum concentrations of amoxicillin versus time following intravenous (i.v) administration of a single dose of 10 mg kg⁻¹ body weight or 20 mg kg⁻¹ body weight orally to healthy camel. (n = 10 each)

After orogastric administration of amoxicillin the antibiotic was rapidly but incompletely absorbed with t₁/₂ of absorption of 15.3±1.9 min. The mean peak plasma concentration was 3.11±0.83 µg mL⁻¹ was detected at 2 h after drug administration. The mean estimated systemic availability (F) was 23.3±1.2% (Table 2).

DISCUSSION

The disposition of amoxicillin in camel after both intravenous and oral administration was best described by a two-compartment model with a short half-life. Similar results have been reported in man[11], horse[11,14], sheep and goat[13,15] and dog[16].

The short distribution half-life of amoxicillin indicates that the drug moves rapidly from central to peripheral compartment. The volume of distribution of the drug exceeds the volume of the central compartment (410 mL kg⁻¹) suggesting extensive tissue penetration[12]. The rapid elimination phase suggests that, like other penicillin's, amoxicillin is eliminated rapidly by renal tubular secretion[1]. This is consistent with the fact that the nephron in the camel is twice as long as in cows or goat[12].
The high body clearance (5.4 mL/min/kg) and short elimination half-life of amoxicillin indicate that IV administration of these soluble forms to camels may have some limitations for treating bacterial infections in camel practice. In total absorption and rapid elimination after oral administration were responsible for the small area under plasma concentration time curve so that bioavailability was only 23%. The low plasma concentrations of amoxicillin seen may be because of chemical reduction by rumen microflora[29], poor solubility in aqueous rumen contents[28] or extensive first pass effect[29]. As camelid and ruminant forestomach share similarities in fermentative capacities and digestive qualities, similar causes for poor absorption of amoxicillin in camels might be expected. Furthermore, amoxicillin has been reported to be absorbed across the intestinal mucosa by both passive diffusion and active transport. The active transport is most likely mediated through the oligopeptide carrier localized at the apical enterocyte membrane which is a symport carrier transporting a substrate with a proton across the apical enterocyte membrane[22-25]. The existence in camels of a carrier-mediated transport that can become saturated at high dosage, could explain the low oral bioavailability of amoxicillin reported here and elsewhere[27].

Throughout a course of treatment is highly desirable to maintain therapeutic concentrations of antibiotic in the body. A Minimum Inhibitory Concentration (MIC) of amoxicillin 0.5 μg mL⁻¹ has been reported[29]. In the present study, a mean plasma amoxicillin concentration of 0.5 μg mL⁻¹ or more was maintained for at least 4-6 h after a single IV or oral dosing. It seems likely that such a dosage value may need to be given more than once every 24 h.

ACKNOWLEDGMENT

The author thanks the Deanship of Scientific Research, King Faisal University for financial support.

REFERENCES