Additional Possibility of Data Analysis of Enzyme Inhibition and Activation

3. Geometrical Portraits of Enzymatic Reactions for Data Processing in Enzyme Temperature Activation

1,2P. V. Krupyanko, 1V. I. Krupyanko and 3I. N. Dorokhov

1G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Prospect Nauki 5, Moscow region, Russia
3D. I. Mendeleev Moscow State University, Moscow, Miusskaya 5, 121352, Russia

Abstract: When calculating enzyme energy activation (Ea), researchers tend to only plot a temperature dependence of the course of change in the logarithm (lg V) of maximum reaction rate upon (1/T°K) and determine these thermodynamic parameters by the slope angle (tg α) of experimental lines in the (lg V;1/T) coordinates of Arrhenius. Yet, the course of change in the Michaelis constant (Km), the second important parameter of enzyme activation, is not taken into consideration as there is no this parameter in the Arrhenius equation. In practice, simultaneous account of temperature dependence in the course of change of both V and Km parameters allows additional analysis of the dynamics of enzyme temperature activation. A vector method of representation of such data in the three-dimensional K, V, T coordinate system is proposed. Examples of data processing in temperature activation of bovine pyrimidine-specific RNases A and B using conventional methods and the proposed one are given.

Key words: RNase A, RNase B, energy activation, intensity activation, geometrical portrait of enzyme temperature activation

INTRODUCTION

Enzyme energy activation (Ea) is one of essential factors in the selection of protein catalysts for use in biotechnology and under laboratory conditions. Its values are also important for studying the mechanism of enzyme action. Thus, researchers who start working with enzymes have to determine these thermodynamic parameters. When estimating Ea, they plot temperature dependencies of the course of change in maximum reaction rate V (or Km) and calculate Ea by respective graphs in the (lg V;1/T) coordinates of Arrhenius. Out of two equally important and simultaneously determined kinetic parameters of enzyme activation temperature dependence of the course of change in the Michaelis constant (Km) is not taken into consideration, though this parameter also changes with temperature as V (Table 1 and Fig. 1-3). In practice, simultaneous account of the course of change V and Km permits to obtain additional data on the dynamics of enzyme activation. Since there is no Km parameter in the Arrhenius coordinates (Eq. 2), the dynamics of its temperature dependence is not presented in most pertinent publications.1-13.

A vector method of representation of enzymatic reactions14,15 allows simultaneous account of the course of change in V and Km parameters of enzyme temperature activation using the three-dimensional K, V, T coordinate system (Fig. 4 and 5). It also provides some new techniques for analysis of the mechanism of enzyme action by using such auxiliary parameters of enzyme temperature activation as:

a) Intensity of enzyme temperature activation
b) Overall effect of enzyme temperature activation
c) A geometrical portrait of enzyme temperature activation.

This study presents data processing in enzyme temperature activation by taking as an example pyrimidine-specific Rnase A and RNase B.

MATERIALS AND METHODS

Chemicals: Bovine pyrimidine-specific RNase A (EC 3.1.27.5) and RNase B (EC 3.1.27.5). Substrate: cytidine-2',3'-monophosphate, sodium salt (C> p). The reagents are products of Sigma (USA).

Corresponding Author: Dr. V. I. Krupyanko, Leading Researcher, Department of Analytical Biochemistry, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Russia
Fax: 7-095-956-33-70 E-mail: krupyanko@ibpm.pushchino.ru
The course of substrate cleavage catalyzed by ribonucleases was recorded on a double-beam CF-4DR spectrophotometer (Optica Milano, Italy).

Reactions were carried out in 0.01 M MES buffer (pH 6.0) with ionic strength of 0.1 (by NaCl of high purity) at constant stirring. Dependences were plotted by increase in the absorption (+ΔA₅₀₆) of a solution containing the substrate and the enzyme against a solution of the same composition, but without the enzyme.

The concentration ([C₅₇]) was changed within 9.8·10⁻³-1.96·10⁻¹ M. Selection of the substrate was stipulated by an interval of minimum error in the determination of Kₙ and V parameters²⁵,²⁶. The concentration of RNase A and RNase B was 1.48 and 1.32 μg mL⁻¹.

Determination of enzyme activity: The kinetic V and Kₙ parameters were calculated by plots in the (v-1; s⁻¹) coordinates of Lineweaver-Burk by the computer program Sigma Plot Version 4.0 (USA).

The root-mean-square deviation at five measurements was as follows: v = ±2.5%; Kₙ = ±7.5%; l and Sₙ = ±10%.

Enzyme energy activation (Eₙ) was estimated by plots in the (lg V_l/T) coordinates of Arrhenius (Fig. 3) using the same computer program.

In order to calculate the length of vectors in enzyme activation (Eq. 3) and Sₙ areas overlapped by Lₙ vectors (Eq. 4) at temperature increase (Fig. 4-6), it was necessary to unify the parameters by use of conventional units (c.u.). For this purpose, the following intervals were taken: t = 10°C = 1 c.u.-on the 0° abscissa, Kₙ = 1·10⁻⁴ M = 1 c.u.-on the 0 Kₙ ordinate and V = 1·μmol C₅₇ p/min/μg protein = 1 c.u.-on the 0V applicate.

This allowed construction of spatial vectors of enzyme temperature activation in the three-dimensional KₙVₙt coordinate system (Fig. 4 and 5) for determination of the length of Lₙ vectors and calculation of the Sₙ areas overlapped by Lₙ vectors at their shift due to temperature increase.

For example, to calculate the l vector length of RNase A activation at 15°C (Eq. 3), the following values must be expressed in conventional units (Table 1, line 1): t = 1.5 c.u., Kₙ = 5.61 c.u., V = 7.32 c.u. (given in brackets), from where: lₕ = 9.34 c.u. (Fig. 4 and 6). Accordingly, to In order to calculate the Sₙ area at shift of the lₕ vector for RNase A temperature activation to the position Lₓₕ, the first two lines in Table 1 are used.

RESULTS AND DISCUSSION

Conventional data analysis in enzyme temperature activation: The maximum reaction rate (V) of cytidine-2',3'-monophosphate cleavage catalyzed by both RNase A and RNase B increased in the whole temperature interval, not chieving the denaturation range (>50°C) (Fig. 1-3 and Table 1).

For data processing, temperature dependencies of the course of change in the logarithm of maximum reaction rate of substrate hydrolysis were plotted in the (lg V_l/T) coordinates of Arrhenius by the slope angle (tg α):

\[
Eₙ = 2.303R \cdot \ln \alpha
\]

(1)

of experimental lines (Fig. 3):

\[
\text{lg} V = \frac{Eₙ}{2.303 \cdot R} \cdot \frac{1}{T} + A
\]

(2)

where, R—the gas constant 1.987 cal mol⁻¹, T—temperature by the Kelvin scale (°K), A—constant of integration. It was established that Eₙ was 5.63 and 6.41 Kcal mol⁻¹ for RNase A and RNase B, respectively, which is in accord with data on other ribonucleases.

The main difference between the enzymes is as follows: RNase B has a carbohydrate residue comprising six molecules of mannose, two molecules of acetylglucosamine and a peptide of four amino acids. These enzymes are identical in other respects and RNase B can be considered as a glycoprotein analog of RNase A.
Glycoprotein has a molecular mass of 1350 Da and is strongly bound to the polypeptide chain of RNase B. A weaker of binding of RNase B to the substrate than of RNase A to the same substrate (K_{m(B)}>K_{m(A)}), accompanied by decrease in the maximum reaction rate (V_{m(B)}<V_{m(A)}) and increase of the energetic boundary of catalyzed reaction (E_{a(B)}>E_{a(A)}), can be explained by the presence of glycoprotein in the molecule of RNase B.

It is difficult to get information about the dynamics of enzyme temperature activation by conventional data processing of the course of change in the kinetic K_n and V parameters for both ribonucleases: researcher wants to know if the presence of the glycoprotein complex in the molecule of RNase B has a stabilizing effect on that enzyme or not and in what temperature interval and also if the mechanism of enzyme activation remains stable at temperature increase or not.

Additional analysis: Data analysis reveals that simultaneous account of the course of change in V and K_n
will characterize intensity of enzyme temperature activation, the area S_i (c.u.) overlapped by the vector due to temperature increase:

$$S_i = 0.5 \left(\frac{|K_m|}{V_i} + \frac{|V_i|}{t_i} + \frac{|t_i|}{K_m} \right)$$

(4)

will be a measure of overall effect of enzyme temperature activation, the trajectory made by the mobile end of L_i vector will be a characteristic curve which is individual for each enzyme. On the whole, all these will represent a geometrical portrait of enzyme temperature activation. Such portraits demonstrate the rectangular segments characterizing stability of the mechanism of enzyme temperature activation are found only in the initial temperature interval (15-25°C) in the case of RNase A (Fig. 4), while in the case of RNase B constant strengthening of enzyme activation is observed in the whole temperature interval (Fig. 6, line 2a) - glycoprotein stabilizes the temperature of RNase B activation. This is also confirmed by the auxiliary (I_i and S_i) parameters of enzyme temperature activation.

Linearity of plots representing change in the length of L_i vectors of temperature activation by RNase A can only be found in the initial temperature interval (15-25°C), in the case of RNase B it retains within the whole temperature range (Fig. 6, dotted lines 1a and 2a). Besides, in the 1st case the length of L_i vectors actually remains the same, while in the 2nd case (RNase B) it proportionally increases.

A comparative study of the S_i areas overlapped by L_i vectors in enzyme activation indicates that the overall effect of RNase A temperature activation proved higher (19.56/16.44 = 1.2) than of RNase B (Table 1, Fig. 4 and 5).

It may conclude that in biotechnology and under laboratory conditions at higher temperatures the use of RNase B is preferable than of RNase A in all respects.

REFERENCES