Journal of Biological Sciences

ISSN 1727-3048
Cold Pretreatment-Induced Changes in Antioxidant Enzyme Activities and Relative Water Content and Soluble Sugars in Shoots and Roots of Soybean Seedlings

Leila Zeinali Yadegari, Reza Heidari and Jirair Carapetian
Department of Biology, Faculty of Science, Urmia University, Iran

Abstract: Physiological responses to chilling, including antioxidative enzyme activity, Relative Water Content (RWC) and soluble sugar contents were investigated in soybean to identify mechanisms of chilling tolerance. Plants were exposed to 15°C (cold-acclimated) or 25°C (non-acclimated) for 24 h, under 250 μmol m⁻² sec⁻¹ Photosynthetically Active Radiations (PAR). Then all plants were exposed to 4°C (chilling temperature) for 24 h and allowed to recover at 25°C for 24 h. We analyzed the activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (GPX) and soluble sugar content and RWC in both shoots and roots of soybean seedlings. It revealed that the activity of APX and CAT and GPX induced in leaves and roots. Increased activity in roots is important for cold tolerance as compared to shoots. The amount of RWC decreased in both roots and shoots, but soluble sugar content increased, especially in shoots as compared to control plants. Chilling sensitive soybean plants can be made tolerant to cold by cold-acclimation.

Keywords: Acclimation, antioxidant, ascorbate peroxidase, catalase, chilling, guaiacol peroxidase, RWC, soluble sugar

INTRODUCTION

Food crops of tropical and subtropical origins such as soybean (Glycine max), corn (Zea mays L.) and tomato (Lycopersicon esculentum Mill) are cultivated in areas where temperatures fall below the optimum required for their normal growth and development. It is now known that exposure of chilling-sensitive plants, such as maize and tomato, to temperatures that are slightly above chilling, reduces chilling injury (Seebba et al., 1999, Venema et al., 2000). Various mechanisms have been suggested to account for chilling injury or tolerance in plants (Barsa, 2001). There is increasing evidence that chilling causes elevated levels of Active Oxygen Species (AOS), which contribute significantly to chilling damage (Wise and Naylor, 1987a). AOS such as superoxide (O²⁻), hydrogen peroxide (H₂O₂), hydroxyl radicals (OH) and singlet oxygen (¹O₂), are present in plants at various levels at 25°C as a result of normal aerobic metabolism. Plants have evolved antioxidant systems to protect cellular membranes and organelles from damaging effects of AOS (Foyer et al., 1991). Antioxidant enzymes, such as catalase (CAT) and various peroxidases such as guaiacol peroxidase (POX) and ascorbate peroxidase (APX) can react with and neutralize, the activity of AOS (Foyer et al., 1991; Lee and Lee, 2000; Odaïra et al., 2000; Scandalios, 1993). Beside these enzymes, antioxidant compounds such as ascorbate, glutation, β-carotene and α-tocopherol also play important roles in the removal of toxic oxygen compounds (Hodges et al., 1996; Wise and Naylor, 1987b). Cold-acclimation increases tolerance to AOS in plants with an increase in antioxidant enzymes (Seebba et al., 1999). In chilling sensitive plants, the ability to defend against oxidative damage is inhibited by the reduction expression of antioxidants such as ascorbate, glutation and α-tocopherol (Wise and Naylor, 1987b), CAT (Fadzillah et al., 1996) and SOD (Michalski and Kanjuga, 1982). Chilling tolerance improved when GSH peroxidase and CAT levels were enhanced (Upadhyaya et al., 1989). Thus, it is important to determine the activity of various antioxidants during acclimation and chilling to assess their contribution to chilling tolerance. Sugars appear essential in plant cold-acclimation, as shown for example by the inability of an Arabidopsis sucrase synthase mutant to cold-acclimation (Welling and Palva, 2006) or the requirement for light in low-nonfreezing temperature-induced cold-acclimation connected to sugar accumulation (Warner and Juntila, 1999). Precise function of sugars is not known, but their high abundance in cold acclimated plants suggests a role in osmoregulation and less abundant sugars might also have a role in cryoprotection or as signaling molecules (Welling and Palva, 2006). We aimed to determine whether AOS-scavenging enzymes and soluble sugar and relative water contents play a role in soybean tolerance to chilling stress.

Corresponding Author: Leila Zeinali Yadegari, Department of Biology, Faculty of Science, Urmia University, Iran

1525
MATERIALS AND METHODS

Seeds of soybean (*Glycine max*) were purchased from oilseeds center, Ardabil and were soaked in water for 6 h at 25°C, then were germinated in Petri dishes on two layers of filter paper for 48 h at 25°C in an incubator. Subsequently the soybean seedlings were transferred to pots containing washed sand (4 seedlings per pot) and were watered with half-strength Hoagland nutrient solution. The plants were grown at 27/25°C (day/night) temperature, 70% relative humidity, with a 16:8 h day/night photoperiod under 250 μmol m⁻² sec⁻¹ photosynthetic photon flux density. Seedlings at the three-leaf stage, were placed at 15°C (cold-acclimated) or 25°C (non-acclimated) for 24 h. The acclimated and non-acclimated seedlings were then exposed to chilling at 4°C for 24 h and allowed to recover for 24 h at 25°C. Harvesting was done at the same time each day to avoid complications from diurnal fluctuations in biochemical processes. Experiments were conducted from May to July in 2007 at Biochemistry Lab, Department of Biology, Faculty of Science, Urmia University, Iran. Statistical analyses were performed using SAS software. Measurements were mean of 3 replicates±SE.

Enzyme extraction and assay: Samples were prepared for CAT, APX and GPX analyses by the method described by Chang and Kao (1998). The amount of 0.5 g of frozen leaf and root materials from all treatments were harvested and homogenized with a mortar and pestle in 6 mL of extraction solution [0.05 M tris-HCl buffer (pH = 7.2), 3 mM MgCl₂, 1 mM EDTA]. Then the solution was centrifuged for 20 min at 5000 rpm. The supernatant was used for monitoring antioxidant enzymes mentioned above. Catalase activity was determined by monitoring the disappearance of H₂O₂ at 240 nm using the method of Chance and Maehly (1959). The reaction mixture contained 50 mM potassium phosphate buffer (pH = 7.4), 0.1 mL H₂O₂ (1%) and 2 mL enzyme extract. APX activity was assayed by monitoring the ascorbic acid dependent reduction of H₂O₂ at 240 nm, as described by Asada (1992). The reaction mixture contained 50 mM potassium phosphate buffer (pH = 7.4), 0.5 mM ascorbate, 0.2 mL H₂O₂ (1%), 0.1 mL enzyme extract. GPX activity was determined at 420 nm by the method of Chang and Kao (1998). The reaction mixture contained 50 mM potassium phosphate buffer (pH = 7.4), 1 mL guaiacol (1%), 1 mL H₂O₂ (1%) and 2.5 mL enzyme extract.

Relative water content: Chilling injury on leaves and roots was evaluated by changes in Relative Water Content (RWC). Relative water content was calculated using the formula has became below (Kuk et al., 2003). Soluble sugar content: Soluble sugars content was measured using phenol sulphuric method (Fales, 1979). The amount of 0.5 g of plant tissues (leaf or root) were sampled and homogenized with a mortar and pestle in 5 mL distilled water and then was filtered through Whatman No.1 filter paper. Two milliliter of filtered extract transferred into tube and 1 mL of phenol 5% (w/v), 3 mL of sulphoric acid 98% were added. After 1 h the absorbance was recorded at 485 nm using UV-visible spectrophotometer (WPA model S2100).

RESULTS AND DISCUSSION

It has been reported that some chilling-sensitive plants acclimate if they are exposed to a low temperature slightly above the threshold of chilling temperature, in a process analogous in some respects to the acclimation that occurs in perennial plants in the autumn. Therefore chilling injury can be alleviated if plants are exposed first to a low non-chilling temperature (Rikin et al., 1979). It has been shown that acclimation of maize seedlings to otherwise lethal chilling temperatures by a milder cold pretreatment was accompanied by catalase and peroxidase transcript accumulation (Prasad et al., 1994). Other correlations between cold-acclimation and antioxidant defense have also been reported (Tao et al., 1998). To study the mechanisms of chilling injury or tolerance, most researchers utilize metabolic differences between chilling-sensitive and tolerant varieties as model systems (Pinheiro et al., 1997; Sanyama and Tamada, 1995). However, this system is confounded by genetic differences between sensitive and tolerant varieties. Therefore, it is difficult to interpret the observed metabolic differences in relation to mechanisms of chilling tolerance when using different varieties of plants. Using a chilling-sensitive variety that can be cold-acclimated is advantageous for studying the mechanisms involved in chilling tolerance because it eliminates the complexity of genetic differences. In this study, only one variety was used to demonstrate whether chilling tolerance can be induced in soybean plants by cold-acclimation and to examine whether an AOS-scavenging system is involved in tolerance to chilling stress. It has been reported that cold-acclimated rice plants shows higher tolerance to chilling stress than non-acclimated plants (Kuk et al., 2003). Also, a similar phenomenon was demonstrated in other cold-sensitive species, such as maize, tomato and Arabidopsis thaliana (L.) Heynh (Venema et al., 2000). Free radicals and other active derivatives of oxygen are

\[
\text{RWC} = \frac{1 - \text{Dry weight of tissue}}{\text{Fresh weight of tissue}} \times 100
\]
inevitable by-products of biological redox reactions. Active oxygen species inactivate enzymes and damage important cellular component. The increased production of toxic oxygen derivatives is considered to be a universal or common feature of stress conditions. Plants have evolved a wide range of mechanisms to contend with this problem. The antioxidant defence system of the plant comprises a variety of antioxidant molecules and enzymes (Arora et al., 2002). We have investigated the activity of APX, CAT and GPX in both leaves and roots of cold-acclimated and non-acclimated soybean plants. Ascorbate peroxidase activity has mainly been reported from chloroplast and cytosol (Chen and Asada, 1989). However, some recent studies have also reported its occurrence in mitochondria as well (Gomez et al., 1999). This enzyme involved in Asada-Halliwell pathway of hydrogen peroxide scavenging that also involves various antioxidant enzymes (Arora et al., 2002). Guaiacol peroxidase removes H₂O₂ from apoplast and vacuole and utilizes L-ascorbic acid as electron donor. In an abiotic environment it uses phenolic compounds such as guaiacol as redox intermediate (Chanda and Singh, 2000). Catalase is another defense enzyme that is present in peroxisomes (Scandalias, 1993). In this study APX activity in leaves was found to be higher than roots. But significant changes were observed in roots. In recovery phase, cold-acclimated plants returned to normal condition more easily and rapidly than non-acclimated plants. Soybean plants exposed to chilling temperature exhibited all the aforementioned symptoms; however, cold-acclimated plants showed higher tolerance to chilling stress than non-acclimated plants. Cold-acclimated plants generally showed similar level of injury as non-acclimated ones, but cold-acclimated plants showed the capability to recover from chilling injury. This was indicated by faster recovery of fresh weight of cold-acclimated plants compared with non-acclimated ones. The baseline levels of antioxidative enzyme activities were generally the same between cold-acclimated and non-acclimated leaves. No differences were found in APX, GPX and CAT activities in cold-acclimated and non-acclimated leaves during chilling and recovery period. CAT, APX and GPX activities in cold-acclimated and non-acclimated leaves were similarly affected by chilling temperature (Fig. 1-3). However, recovery in cold-acclimated leaves for APX, GPX and CAT activities were better than in non-acclimated leaves. Significant changes in GPX activity were observed between cold-acclimated and non-acclimated leaves 24 h after acclimation (Fig. 2, 3). GPX and APX activities in cold-acclimated leaves were higher than non-acclimated leaves.

Fig. 1: Changes in leaf CAT activity (U min⁻¹) in cold-acclimated and non-acclimated soybean leaves during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 2: Changes in leaf APX activity (U min⁻¹) in cold-acclimated and non-acclimated soybean leaves during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 3: Changes in leaf GPX activity (U min⁻¹) in cold-acclimated and non-acclimated soybean leaves during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Activities of CAT, APX and GPX in cold-acclimated and non-acclimated roots during acclimation and chilling were generally the same (Fig. 4-6). Roots of cold-
acclimated plants showed higher activity of antioxidative enzymes during the phase of the recovery period compared to roots of non-acclimated plants. APX activity in cold-acclimated roots was higher than in non-acclimated roots in recovery phase. GPX activity in cola-acclimated roots was significantly higher than non-acclimated roots (Fig. 6). In all plants APX, CAT and GPX activities in cold-acclimated roots was higher than non-acclimated and cold-acclimated roots had higher potential to recover than non-acclimated plants. However, CAT and APX activity were similar between cold-acclimated and non-acclimated roots during recovery. No significant differences were found in CAT activity between cold-acclimated and non-acclimated roots during acclimation (Fig. 4).

The minimal impact of chilling on Relative Water Content (RWC), high photosynthetic efficiency of cold-acclimated plants and the full recovery of carbon fixation capability of cold-acclimated plants after chilling. Typical symptoms of chilling injury are wilting, yellowing of leaves and inhibition of growth. Leaf fresh weights of cold-acclimated and non-acclimated soybean seedlings were reduced in chilling period (Fig. 7, 8). Leaf and

Fig. 4: Changes in root CAT activity (U min⁻¹) in cold-acclimated and non-acclimated soybean roots during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 5: Changes in root APX activity (U min⁻¹) in cold-acclimated and non-acclimated soybean roots during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 6: Changes in root GPX activity (U min⁻¹) in cold-acclimated and non-acclimated soybean roots during acclimation, chilling and recovery. Mean of 3 measurements±SE

Fig. 7: Changes in root relative water content (%) in cold-acclimated and non-acclimated soybean roots during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 8: Changes in leaf relative water content (%) in cold-acclimated and non-acclimated soybean leaves during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05
Fig. 9: Changes in root soluble sugars (mg g⁻¹ FW) in cold-acclimated and non-acclimated soybean roots during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

Fig. 10: Changes in leaf soluble sugars (mg g⁻¹ FW) in cold-acclimated and non-acclimated soybean leaves during acclimation, chilling and recovery. Mean of 3 measurements±SE p = 0.05

root fresh weight of non-acclimated plants rapidly declined when exposed to chilling temperature and did not recover from the chilling treatment properly. Leaf and root fresh weight of cold-acclimated plants also declined significantly 24 h after exposure to chilling temperature. Although the cold-acclimated plants did not completely recover from chilling injury compared with untreated control plants, the cold-acclimated plants showed a general increase in leaf and root weight compared with non-acclimated plants during the recovery period.

Soluble sugars function as cryoprotectants and osmoles that protect cells from freezing damage (Xin and Browe, 2000). Shou et al. (2004) showed that 24 and 48 h cold-acclimations significantly increased the soluble sugar levels in plants. Accumulation of sucrose and other simple sugars that occurs with cold-acclimation also contributes to the stabilization of membrane as these molecules can protect membranes against freeze-damage because increase in sugar content lowers the freezing point of cell solution (Mahajan, 2005). Especially sucrose can increase the effectiveness of the heat stable proteins in preventing protein denaturation (Robertson et al., 1994). Soluble sugar levels were increased in roots. In cold-acclimated roots, soluble sugars content were started to increase in acclimation phase and downed in recovery phase. But in non-acclimated roots they increased in chilling phase suddenly (Fig. 9). In leaves changes were significant (Fig. 10). Soluble sugars content in non-acclimated leaves, in acclimation phase, decreased, then increased suddenly in chilling phase and subsequently decreased in recovery phase.

REFERENCES

Mahajan, S. and N. Tuteja, 2005. Cold, salinity and drought stresses: An overview. 10.018

