Physiological Vulnerability to Diet Induced Obesity in Inbred Alloxan-Induced Diabetes-Susceptible Mice

Wei Zhou and Katsunori Sato

1Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
2Laboratory of Animal Nutrition, Department of Animal Science, Inner Mongolia Agriculture University, Huhehot, China

Abstract: The effects of high fat diet on obesity and susceptibility to diabetes in Alloxan-induced diabetes-susceptible mice were studied. A total of 40 mice were divided equally (n = 10 per group) into four groups: (i) male high fat (40%) diet group, (ii) female high fat (40% fat) diet group, (iii) male control (7% fat) diet group, and (iv) female control (7% fat) diet group. The body weight and blood glucose level of high fat male diet group were significantly (p<0.01; p<0.001) higher than those of other groups at 5 to 20 weeks of age. The high fat male and female mice produced significantly higher (p<0.05; p<0.001) perinephrium fat and mesenteric fat than those for corresponding control groups. However, the high fat female mice produced significantly (p<0.001) higher epididymal and high fat male mice produced significantly (p<0.001) lower epididymal fat than those for corresponding control groups. The high fat female mice produced significantly (p<0.01) higher retroperitoneal fat than that for control female group. The percentages of pancreas and genital organ tended to decrease and percentage of liver tended to increase for high fat male mice and percentage of pancreas and liver tended to decrease in high fat female mice than those for corresponding control group. However, the difference between two dietary groups in female mice for genital organ was insignificant. Only the male group fed with high fat diet developed diabetes (rate of incidence of glycosuria) with the earliest onset in strains occurred at the age of 10 weeks, followed by increasing to 100% disease at the age of 18 weeks and the phenomenon had been kept till the 20 weeks of age. Results of this study have shown that high fat diet male mice developed diabetes and dysfunction of glucose metabolism.

Key words: Obesity, diabetes, high fat diet, visceral fat, mice

INTRODUCTION

Mouse models have been employed in the study of obesity for nearly a century and have been proved valuable in elucidating the effects and causes of obesity and related phenotypes (Ravussin and Bouchard, 2000). Increased dietary fat content has been shown to produce diabetes and obesity in various strains of mice and in rats. Obesity, which is easily induced by western diet, usually results in type II diabetes (Thomas et al., 2003). As an environmental factor, dietary fat is a key component that influences the metabolic pathways involved in the development of diabetes (Misato et al., 2004). Several current theories exist to explain the role of fat in the development of obesity (Bry, 1989). Fat has also received recent attention as the possible stimulus for the onset of type II diabetes in susceptible individuals (McGarry, 1992). It has been reported that some inbred strains of mouse differentially developed obesity and type II diabetes in response to feeding with a high-fat diet (Misato et al., 2004).

Alloxan-induced diabetes is known to be a representative form of experimental diabetes and it is induced through the destruction of β-cell in Langerhan’s islands by alloxan (Iino et al., 1991). In another experiment, Hachell et al. (1986) noted that the incidence of Alloxan-induced diabetes varies according to the method of administration, the environmental factors such as nutritional conditions and the species and strains of the animals used. However, there has been no report on investigation of effects of nutritional condition on Alloxan-induced diabetes-susceptible mice. In this study, the body weight, blood glucose level, visceral fat and percentage of incidence of glycosuria were examined to investigate whether or not high fat diet can induce obesity and diabetes in Alloxan-induced diabetes-susceptible male and female mice. The current study also investigates the effects of high fat diet on body weight blood glucose level and also distribution of fat deposition on different tissues including reproductive tissues.

Corresponding Author: Wei Zhou, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
MATERIALS AND METHODS

Treatment of animals: The Alloxan-induced diabetes-susceptible (ALS) inbred strain from a foundation stock derived from C57: CD-1 (ICR) mice were established after more than 20 generations of full-sib mating and by simultaneous selective breeding for developing and not developing diabetes after Alloxan administration (45 mg kg^{-1} in males, 47 mg kg^{-1} in females) (Ino et al., 1991). They were managed at the Department of Animal Resources, Laboratory of Advanced Science Research Center of Okayama University under pathogen free conditions with a standard 12 h light/dark cycle, temperature (24±0.5°C), relative humidity (55±5%) and ventilation (10-12 times h^{-1}). The mice were housed in cages (30×20×13 cm) after a 1 week of adaptation period to the cage. Prior to the administration of special diets, mice were fed standard rodent chow and water ad libitum. Male and female Alloxan-induced diabetes susceptible inbred mice were each randomly equally divided (n = 10 per group) into four groups, which showed the uniformity in response to each treatment. The groups were: (i) male high fat diet group (ii) female high fat diet group (iii) male control diet group and (iv) female control diet group. During the study period (from 4 to 20 weeks) the high fat male, control male, high fat female and control female mice were consumed 379.82, 397.95, 362.81 and 378.77 g feed/mice, respectively.

Experimental diet: The high fat mice groups were fed with high fat diet containing 40% (Lard 33.0%, Soybean-oil 7.0%) fat, while the control groups contained 7% (Soybean-oil 7.0%) fat diet. The feeding trial was of 4 to 20 weeks of age. The composition of the diets is listed in Table 1.

Body weight, blood glucose level, visceral fat and percentage of glycosuria: The body weight (g) and blood glucose level (mg dL^{-1}) of each animal were measured weekly upto 20 weeks of age. From each group, 6 mice were sacrificed randomly at 20 weeks of age and weight of pancreas, liver and visceral fats such as epididymal fat (EPI), perinephrium fat (PER), retroperitoneal fat (PR) and mesenteric fat (MES) were measured. The visceral fats from each mouse were dissected according to defined anatomic landmarks. Percentage of incidence of glycosuria was measured in Diastix above + (0.25 g dL^{-1}) be judged. Blood glucose levels were measured for appeared rate glycosuria.

Statistical analysis: The mean values for each parameter were calculated and the statistical comparisons were made using two-tailed student t-test.

RESULTS

Figure 1 shows the body weights of mice for different dietary groups from 4 to 20 weeks of age. The body weights of animals of both sexes on high fat group were heavier than animals on corresponding control group from 6 weeks onward. The body weight of male mice was significantly (p<0.05) heavier and female mice was highly significantly (p<0.001) heavier over control group at 5 weeks of age. However, the body weight of male mice was highly significantly (p<0.001) and of female mice were significantly (p<0.01) heavier over control group from 6th weeks onward. It was observed that the differences in body weights between high fat and control groups was 15.3 g for male mice and 17.4 g for female mice at 20 weeks of age.

The percent of different kinds of visceral fats at 20 weeks of age are shown in Table 2. The high fat male and female mice produced significantly higher (p<0.05, 0.001) PER and MES than those for corresponding control groups. The high fat female mice produced significantly (p<0.001) higher EPI than that for control female, while the high fat male mice produced significantly (p<0.001) lower

![Fig. 1: Body weight of male and female mice fed with high fat and control diet from 4 to 20 weeks of age](image-url)
Table 2: Visceral fat pads in male and female mice in high fat and control diets at 20 weeks of age (%)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Treatment</th>
<th>EPI</th>
<th>PER</th>
<th>RP</th>
<th>MES</th>
<th>Total visceral fat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean±SEM (n = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Control</td>
<td>5.21±0.21***</td>
<td>0.54±0.06***</td>
<td>0.75±0.06</td>
<td>1.15±0.08***</td>
<td>7.63±0.40</td>
</tr>
<tr>
<td></td>
<td>High fat</td>
<td>3.63±0.03***</td>
<td>1.46±0.08***</td>
<td>0.61±0.04</td>
<td>2.68±0.11***</td>
<td>8.38±0.22</td>
</tr>
<tr>
<td>Female</td>
<td>Control</td>
<td>2.69±0.18***</td>
<td>0.76±0.07***</td>
<td>0.34±0.03***</td>
<td>0.87±0.07***</td>
<td>4.65±0.33***</td>
</tr>
<tr>
<td></td>
<td>High fat</td>
<td>1.99±0.62***</td>
<td>1.82±0.31***</td>
<td>0.65±0.07***</td>
<td>3.10±0.41***</td>
<td>13.56±0.99***</td>
</tr>
</tbody>
</table>

EPI: Epididymal fat, PER: Perirenal fat, RP: Retroperitoneal fat, MES: Mesenteric fat. Means with different superscripts between high fat and control diet within the same parameter differ significantly (*p<0.05, **p<0.01, ***p<0.001).

Fig. 2: Changes in blood glucose levels of male and female mice fed with high fat and control diet from 4 to 20 weeks of age.

Table 3: Comparison between high fat and control diet for weight of pancreas, liver and genital organ (%a) in male and female mice

<table>
<thead>
<tr>
<th>Sex</th>
<th>Treatment</th>
<th>Pancreas</th>
<th>Liver</th>
<th>Genital organ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean±SEM (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Control</td>
<td>0.86±0.02***</td>
<td>3.95±0.17***</td>
<td>0.45±0.03***</td>
</tr>
<tr>
<td></td>
<td>High fat</td>
<td>0.73±0.02***</td>
<td>6.30±0.31***</td>
<td>0.31±0.02***</td>
</tr>
<tr>
<td>Female</td>
<td>Control</td>
<td>1.06±0.05***</td>
<td>4.39±0.15</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td></td>
<td>High fat</td>
<td>0.73±0.04***</td>
<td>4.05±0.11</td>
<td>0.10±0.01</td>
</tr>
</tbody>
</table>

Means with different superscripts between high fat and control diet within the same parameter differ significantly (*p<0.05, **p<0.01, ***p<0.001)

Fig. 3: Rate of incidence of glycosuria in male mice fed with high fat and control diet from 10 to 20 weeks of age.

Figure 2 shows the levels of blood glucose of high fat and control diet groups in male and female mice. Blood glucose levels were increased for only high fat male mice as age progressed and they produced significantly higher glucose level than all the other groups, except at 4 and 7 weeks of age, which were insignificant. The high fat group female mice were also produced significantly higher (p<0.05, p<0.01) glucose level than control group at 6, 8, 10, 14, 15, 16, 18, 19 and 20 weeks of age.

Results of the present study showed that only high fat male mice developed diabetes from 10 to 20 weeks of age. The other dietary groups of mice did not show any incidence of glycosuria from 4 to 20 weeks of age. The changes of rate of incidence of glycosuria in male mice are shown in Fig. 3. The incidence of glycosuria in male mice increased sharply after showing the crisis. The first crisis appeared at the age of 10 weeks and rate of crisis was 50% at the age of 13 weeks and 100% at the age of 18 weeks still 20 weeks.

DISCUSSION

Alloxan-induced diabetes-susceptible strain mice have been previously demonstrated to be an excellent model system for the study of complex polygenic traits related to body weight, blood glucose and obesity.
(Kobayashi et al., 2004). The present study establishes baseline phenotypic measurements for a variety of obesity-related traits on high fat and control diets for this strain. Results of the present study showed that animals fed the high fat diet had significantly increased body weight and blood glucose levels compared with animals fed the control diet in both the sexes. In the present study, the total visceral fat was significantly higher for high fat diet than that for control diet in female mice, although the difference between diet groups in male mice was insignificant. These results were in agreement with the finding by Taylor et al. (1999), who noted that fat distribution in mice differs by strain, sex and diet. They also reported both male and female diabetes prone mice were obese and, in contrast, B6 females were slightly leaner than males. Body fat distribution and percentage of body fat have both been shown to be influenced by meal feeding, high fat diets and genetic (Leibel et al., 1989). Results of other studies show that distribution of fat deposition differs among different tissues in visceral fat (George et al., 1990). At the present study males stored proportionally less fat in the reproductive fat pad on a high-fat diet and store proportionally more fat in the renal fat pad in response to a high-fat diet. This result was consistent with the published result by Thomas et al. (2003). In the present study mice that on a high fat diet gained more total visceral fat and specifically increased their MES fat depot in comparison to control group. These results might be showed that the increased MES fat deposition observed in this animal model is associated with visceral fat. Different studies have shown that adipose tissue is not only a depot for fuel storage in the form of triglyceride, but also secretes a variety of biologically active molecules. The visceral fat has a high density of glucocorticoid receptor (Rebuffe et al., 1985), a high lipoprotein lipase activity and triglyceride-fatty acid uptake (Marin et al., 1990), a high sensitivity to the main lipolytic hormone, norepinephrine (Rebuffe et al., 1985) and a decreased sensitivity to the antilipolytic effect of insulin (Bolinder et al., 1983). These later characteristics would result in a high release of free fatty acids from visceral adipose tissues into the portal circulation. This, in turn, might be a potential explanation for the increased risk factors associated with an enlargement of the visceral fat mass (Bjorntorp, 1989).

The weights of liver and genitourinary organ in male mice responded dramatically to diet, while in the female mice it was not different between diet groups. These results are partially supported by Baron et al. (1988), who reported that liver and skeletal muscles are the two most important insulin-responsive organs in the body, which respond to diet. The weight of pancreas on high fat group male mice was decreased in both the sexes. It might be viewed as a failure of the pancreatic β-cell to compensate for peripheral insulin resistance with enhanced insulin secretion. After a long-term, high-fat diet, the β-cell proliferation markedly decreased and islet cellular senescence was observed (Sone and Kagawa, 2005). In type II diabetes, the function of reduced β-cell is observed and β-cell mass is decreased by as much as 50% (Butler et al., 2003). Previous studies in rats showed that 90% of pancreas must be removed in order to increase the glucose level (Hosokawa et al., 1996).

Kobayashi et al. (2004) reported that increases in fat deposition have been shown to have tissue-specific relationships with activity of adipose tissue lipoprotein lipase activity levels, which could relate to further changes in fat mass and the development of chronic diseases such as diabetes and cardiovascular disease. It has also been observed in the present study that the high fat diet has resulted in increased blood glucose level and incidence of glycosuria for male, which might be related to obesity. Development of obesity in animals eating high fat diet is the expected outcome, whether the animals are susceptible or resistant to obesity when eating high fat diets has a strong genetic component (West and York, 1998). Some strains of mice (A/J and C57BL) and rats (Osborne-Mendel rat) are exquisitely susceptible to developing obesity when eating high fat or high carbohydrate diets, while other strains of mice (SWR) and rats (S53/PI) are resistant to develop obesity when fed similar diets (George et al., 2004). In addition, Rebuffe et al. (1993) and Surwit et al. (1995) reported that the same result in the B6 mouse is characterized by selective deposition of fat in the mesentery. It was observed that the male mice fed high fat diet developed diabetes and dysfunction of glucose metabolism. But the cause underlying this phenotype in Alloxan-induced diabetic-susceptible mice strain is not clear yet. Further studies are needed to elucidate the physiological functions of insulin and its role in metabolic disorders fatness.

It can be concluded that animals fed the high fat diet had significantly increased body weight and blood glucose levels compared with animals fed the control diet in both the sexes. The high fat diet male mice produced significantly higher perinephrium fat, mesenteric fat and weight of liver than those for control diet male mice. Results indicated that high fat diet might develop diabetes and dysfunction of glucose metabolism in male mice.

ACKNOWLEDGMENTS

Dr. Md. Azharul Hoque, Associate Professor, Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh, was appreciated for the useful comments on the earlier draft of the manuscript.
REFERENCES

