Spread of Extended-Spectrum Beta-Lactamase Producing *Escherichia coli* Clinical Isolates in Sanandaj Hospitals

M. Mansouri and R. Ramazanzadeh

Department of Microbiology,
Department of Pediatric, Faculty of Medicine,
Kurdistan University of Medical Science, Sanandaj, Iran

Abstract: The aim of this study was to determine the prevalence of Extended-Spectrum Beta-Lactamase (ESBL) producing *Escherichia coli* and antimicrobial susceptibility pattern of ESBL-producing and non-producing strains. We evaluated 158 *E. coli* strains isolated from various clinical specimens. The double-disk synergy test was performed on the isolates for the detection of ESBL. These genes were confirmed by PCR methods. The prevalence of ESBL-producing *E. coli* was found as 16.8%. The ESBL-producing isolate rates were 22.2% (6/27) in intensive care units, 22.2% (6/27) in wards and 44.6% (15/27) in outpatients. This study, present the existence of ESBL-producing isolates and high rate of resistance to antibiotics. Clinicians should be familiar with the clinical importance of these enzymes and potential strategies for dealing with them. The results of the study suggest that community acquired control of ESBL-producing *E. coli* has great importance.

Key words: ESBL, *Escherichia coli*, antibiotic resistance, PCR.

INTRODUCTION

Extended-Spectrum Beta-Lactamases (ESBLs) are enzymes conferring broad resistance to beta-lactam antibiotics, including third-generation cephalosporins such as cefotaxime, ceftiraxone and ceftazidime (Apisamtharanak et al., 2007; 2008; Paterson, 2006). More than 150 type of ESBLs have been described and the majority of this enzymes belonging to the TEM and SHV family (Moreno et al., 2007; Mendelson et al., 2005).

The original TEM was first discovered in *E. coli* in a patient named Temociera in Greece, but it spread rapidly to other bacteria. The SHV enzymes, named after the Sul1-Hyd1 variable active site, are commonly associated with *K. pneumoniae* (Sanaha-Kfouri and Araj, 2003).

The beta-lactamase genes are located on the large plasmids that confer resistance to other classes of antimicrobial agents and are readily transmissible from strain to strain and between different species of enteric gram-negative bacilli (Paterson, 2006). Extended Spectrum Beta-Lactamases (ESBLs) are found in a variety of members of the family Enterobacteriaceae (Mendelson et al., 2005). ESBLs are detected most commonly in *Klebsiella pneumoniae* and *Escherichia coli* (Fang et al., 2007). Infections due to these organisms often occur in outbreaks and ESBL have therefore become a serious problem in hospitalized patients (Moreno et al., 2007; Carattoli et al., 2008).

Since, *E. coli* is one of the most common producers of ESBL, we carried out a survey of ESBL-producing clinical isolates of these bacteria in the two hospital in the Kurdistan Province in west of Iran. However, there is no documented report as yet on the incidence of ESBL-positive *E. coli* from these regions. The main objective of the survey was to determine the prevalence of ESBL production among *E. coli* isolated from patients as well as their susceptibility patterns.

MATERIALS AND METHODS

Study population and specimen types: This study was conducted at Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran. From January 2007 to January 2008, consecutive, non-duplicate isolates of *E. coli* were collected from various specimens of patients who were referred to Toohid and Beasat Hospitals. Specimens included urine, wound, respiratory tract, blood, cerebrospinal fluid, skin and soft tissues.

Microbiological methods: All samples were routinely cultured on MacConkey and blood agar plates. Blood samples were cultured in Blood culture bottles. Isolates

Corresponding Author: Rashid Ramazanzadeh, Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Pasdaran Street, Post Cod 66177-13446, Sanandaj, Iran
Tel: +989143104424 Fax: +98(871)6664674

362
Table 1: Primers and conditions of polymerase chain reaction used in present study

<table>
<thead>
<tr>
<th>Primers</th>
<th>PCR primers (5'→3')</th>
<th>Expected size (bp)</th>
<th>PCR conditions</th>
<th>PCR product</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHV-F</td>
<td>GGGTTATTCTTTATGGCTGC</td>
<td>928</td>
<td>94°C, 5 min; 33 cycles of 94°C, 1 min, 58°C, 1 min, 72°C, 1 min; 94°C, 5 min</td>
<td>SHV-1, -2, -5, -7, -11, -12, -18, -26, -52, -33, -38, -44, -46, -49</td>
</tr>
<tr>
<td>SHV-R</td>
<td>TTAGGCTGCAATGGCTGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM-F</td>
<td>ATAAATTCTGGAAGCAGAAGA</td>
<td>1080</td>
<td>94°C, 5 min; 33 cycles of 94°C, 1 min, 58°C, 1 min, 72°C, 1 min; 94°C, 5 min</td>
<td>TEM-1, -52, -71, -104, -105, -138, -151, -152</td>
</tr>
<tr>
<td>TEM-R</td>
<td>GAGACGGTCAATGCTTAATCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-F</td>
<td>ACCGCTGTGTTAGGGAAGTG</td>
<td>759</td>
<td>94°C, 5 min; 33 cycles of 94°C, 45 sec, 58°C, 45 sec, 72°C, 1 min; 94°C, 5 min</td>
<td>CTX-M1-3, -42, -15, -22, -30, -32, -33, -38, -57, -58, -60, -61</td>
</tr>
<tr>
<td>CTX-M-R</td>
<td>TTGAGCCTGGGTAAGGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-1-F</td>
<td>ACACAAATCATAATCACTTCG</td>
<td>813</td>
<td>94°C, 5 min; 33 cycles of 94°C, 1 min, 58°C, 1 min, 72°C, 1 min; 94°C, 5 min</td>
<td>OXA-1, -4, -30, -31, -47</td>
</tr>
<tr>
<td>OXA-1-R</td>
<td>AGGTGTTAGGTAAGGTGATC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-2-F</td>
<td>TTCAAGCCAAGGGGCACGATAG</td>
<td>814</td>
<td>94°C, 5 min; 33 cycles of 94°C, 1 min, 58°C, 1 min, 72°C, 1 min; 94°C, 5 min</td>
<td>OXA-2, -3, -15, -21, -32</td>
</tr>
<tr>
<td>OXA-2-R</td>
<td>TCCAGTGCTACTGGCGGTG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

were identified at the species level using standard biochemical tests and microbiological methods. Only one isolate per patient was included in the study.

Antibiotic susceptibility testing: Disk-diffusion tests were carried out with antibiotic-containing disks on Mueller-Hinton agar plate (Merck). The results were expressed as susceptible or resistant according to the interpretative zone diameters recommended by the Clinical and Laboratory Standards Institute (CLSI) (Clinical and Laboratory Standards Institute, 2006). The following antimicrobial agents were tested amikacin (30 μg), ampicillin (10 μg), ceftazidime (30 μg), cefixime (30 μg), cefotaxime (30 μg), ceftriaxone (30 μg), ciprofloxacin (5 μg), cotrimoxazole (1.25/23.75 μg), gentamicin (10 μg), tetracycline (30 μg), cefizoxime (30 μg) and norfloxacin (10 μg). Quality control strain including: E. coli ATCC25922 was used to make sure the antibiotic disks accuracy and to validate the procedures.

Detection of ESBL production: ESBL production was detected using the Double-Disk Synergy (DDS) test (Jarlier et al., 1988). ESBL presence was assayed using the following antibiotic disks (MAST, UK): cefotaxime (30 μg), cefoxime/clavulanic acid (30/10 μg), ceftazidime (30 μg) and ceftazidime/clavulanic acid (30/10 μg). According to CLSI criteria for ESBL detection, each isolate with inhibition zone diameter ≥22 mm for ceftazidime or ≥27 mm for cefotaxime was considered as a potential ESBL-producer or screen positive. A 5 mm or more increase in a zone diameter for either antimicrobial agent tested in combination with clavulanic acid versus its zone when tested alone was considered for an ESBL-producing organism. *E. pneumoniae* ATCC700603 (positive control) and *E. coli* ATCC25922 (negative control) were used for quality control of ESBL tests.

ESBL-PCR: Template DNA was prepared as follows: a cell pellet from 1.5 mL of overnight culture was resuspended in 500 μL of TE (10 mM Tris, 1 mM EDTA, pH 8.0) after centrifugation and boiling for 10 min. After centrifugation, the supernatant was used for Polymerase Chain Reaction (PCR). The primers and conditions for PCR are listed in (Table 1) (Yao et al., 2007).

Statistical analysis: Data were entered into a database using SPSS 11.5 for Windows (SPSS Inc., Chicago, IL). Differences between proportions were analyzed using the χ²-test. All differences in which the probability of the null hypothesis was p<0.05 were considered significant.

RESULTS

During the study period, 301 consecutive clinical isolates of gram-negative were isolated. Of these, 160 (53%) were identified as *E. coli*. All isolates of *E. coli* were examined for ESBL production as shown in Fig. 1 and 2. Of the 160 *E. coli* isolates, 27 (16.8%) were positive for ESBL.

The sources of the ESBL-producing *E. coli* isolates tested are shown in Table 2. Urinary tract infections were the most abundant source of ESBL-producing *E. coli* strains (13.67%; p<0.001).

Escherichia coli isolates were frequently isolated from out patients 114 cases, in non-ICU wards 32 cases and in ICU wards 14 cases. The prevalence of ESBL-producing isolates differed between hospital wards (Table 3). The prevalence of ESBL-positive *E. coli*
isolates obtained from Toohid Hospital patients was significantly higher than those Brastat Hospital patients.

ESBL-negative E. coli isolates were more sensitive than ESBL-positive isolates (Table 4). In general, susceptibility rates of E. coli isolates to ampicillin, gentamicin, trimethoprim/sulfamethoxazole (SXT) and tetracycline were very low. Amikacin, norfloxacin, ciprofloxacin and third-generation cephalosporins were shown to be the most active antibiotics against these isolates in vitro. ESBL-positive E. coli isolates were resistant to most beta-lactams as well as to non-beta-lactams such as fluoroquinolones, gentamicin, SXT and tetracycline. Their resistance rates to most antibiotics were significantly (p<0.001) higher than those of ESBL-negative isolates. ESBL-producers were more susceptible to amikacin (52.29%) and tetracycline (35.65%). ESBL-negative E. coli strains were more susceptible than ESBL-positive E. coli isolates to cotrimoxazole (48.86 vs. 19.50%, p<0.0001).

DISCUSSION

Since, emerging of the first plasmid-mediated beta-lactamase in gram-negatives (Datta and Kouto, 1965), many studies have addressed the emergence of ESBL-positive E. coli. The current study is the first report that focusing on the distribution of ESBL-producing E. coli in our University Hospitals. The overall rate of ESBL-producing E. coli was lower than the other Iranian studies. Mehran and Rahbar (2008) reported from Iran...
that studied in ICU patients. Although, the high rate of ESBL production (16.8\%) by E. coli isolates in our University Hospitals in compare with Tonkic et al. (2005) and Ozgunes et al. (2006) studies indicate the excessive use of broad-spectrum antibiotics in our hospital and a lack of attention to laboratory screening of ESBL production by clinical isolates.

Most of ESBL-positive E. coli have been isolated from urinary tract infection (19/27). Although, the high rate of ESBL-positive isolate with respiratory tract infection might be determine the nosocomial spread of this enzyme. This study results concerning the high prevalence of ESBL-positive E. coli isolates obtained from Tochid hospital patients than those obtained from Beasat hospital patients are largely in accordance with existence of Infectious ward in Tochid hospital. Inside the Tochid hospital the high rate of ESBL producing E. coli was obtained from ICU ward. This may be indicate the nosocomial spread of isolate, although due to a number of limitations we could not prove this possibility by determining plasmid profiles and pulsed-field gel electrophoresis patterns of the isolates.

In general, susceptibility rates of E. coli isolates to ampicillin, gentamicin, trimethoprim/sulfamethoxazole (SXT) and tetracycline in comparison with other studies (Rodriguez-Bano et al., 2006) were very low. Therefore, reduced susceptibilities to gentamicin in E. coli isolates as reported from the Norwegian study (Tofteland et al., 2007) may indicate increasing the resistance rate to this antibiotic.

Associated resistance to non-beta-lactams such as fluoroquinolones, gentamicin, SXT and tetracycline was frequently observed among ESBL-positive isolates. Their resistance rates to most antibiotics were significantly (p<0.001) higher than those of ESBL-negative isolates. Overall, as many as 18.05\% of E. coli isolates producing ESBLs were nonsusceptible to ciprofloxacin. However, in this study, the incidence of fluoroquinolone resistance among ESBL-producing isolates was approximately two times higher than that reported by Russian studies (Edelstein et al., 2003).

Amikacin remained active against 52.26\% of E. coli isolates, producing various types of ESBLs, however, the susceptibility rate was lower than other studies (Kim et al., 2008; Tonkic et al., 2005; Mendelson et al., 2005). The susceptibility rate to SXT in ESBL-positive isolates was similar to earlier studies in Iran (Mahgian and Rahbar, 2008). These results shown the reduction of value of SXT in the treatment of infections caused by ESBL-positive isolates.

In conclusion, a high prevalence of antibiotic resistance in ESBL-positive E. coli was observed in our hospital setting. As the available treatment options are limited, antibiotic control policies together with the implementation of infection control measures remain of high importance.

ACKNOWLEDGMENTS

The authors kindly thank the Research Deputy of Kurdistan university of Medical science for financial support. We are grateful to our co-operative colleagues in the Microbiology Laboratory of Tochid and Beasat Hospitals.

REFERENCES

