Antitumor Efficacy of Salonestemma Argel and/or γ-Irradiation Against Ehrlich Carcinoma

N. Hanafi and S.Z. Mansour
Department of Radiation Biology, National Centre for Radiation Research and Technology, P.O. Box 29, Nasr City, Egypt

Abstract: The present study aims to evaluate the antitumor effect of aqueous extract of Salonestemma Argel (SA) leaves either alone or combined with 6 Gy of γ-radiation exposure against Ehrlich Carcinoma (EC) bearing mice. SA extract was gavages at the doses of 15 mg kg⁻¹ b.wt. SA gavages to experimental animals 24 h and 7 days after Tumor Inoculation (ATI). γ-radiation exposure was done 7 days ATI as a single dose. In the present study aqueous extract of SA chemosensitivity, growth of transplantable murine tumor, apoptotic and necrotic detection in tumor tissue were done. Histopathological examination, biochemical parameters such as lipid peroxidation (MDA), glutathione content (GSH), superoxide dismutase (SOD) and catalase (CAT) activities for the murine tumor and liver tissues were also examined. SA activates tumor cell death after two weeks. SA significantly decrease tumor volume and recorded high and wide zones of apoptotic tumor cells in tumor tissue either alone or combined with γ-irradiation. SA and γ-irradiation result in a non-significant change in MDA and a non-significant change in GSH level and CAT activity in tumor tissue either alone or combined with γ-irradiation. SA ameliorates MDA and significantly ameliorates GSH level and CAT and SOD activity in liver tissue of EC-bearing mice. Histopathologically SA and/or γ-irradiation represented large areas of apoptosis, hydropic degeneration and nuclear debris in tumor tissue section. However, in liver tissue SA treatment represent increase in Kupffer cells and decrease of inflammatory cells. SA and γ-irradiation represented normal appearance of liver tissue section. It is concluded that SA and/or γ-irradiation represent antitumor activities.

Key words: Chemosensitivity of SA, tumor volume, histopathology, apoptosis and necrosis, biochemical analysis

INTRODUCTION

Cancer has become an important topic in medicine since it is a major cause of death in both the developed and developing countries and it is now only secondary to that of myocardial infarction (Grudzy, 1991). Modern surgery has significantly reduced the cancer mortality. Also the use of additional treatment such as radiotherapy and chemotherapy has resulted in no more than 5% reduction in the number of deaths (Lau et al., 1990). Many plants and animal extracts have shown various biological activities like immunopotentiating and antitumor activities. Therefore, there is a continuing search for better control and preventive methods in order to reduce cancer mortality and related side effects. Many investigations are now being carried out to discover naturally occurring compounds, which can suppress or prevent the process of carcinogenesis (Thapliyal et al., 2002).

Radiation therapy is considered to be one of the most popular and important tools to cure cancer. The killing action of ionizing radiation (X-rays, γ-rays) is mainly mediated through the free radicals generated from the radiolytic decomposition of cellular water. This free radical species, when interact with critical targets like DNA and membranes bring about irreversible damage leading to cell death. Cell survival and adaptation to an environment containing ionizing radiation could mainly depend on the ability of cells to maintain optimal function in response to free radical induced damage at the biochemical level (Agrawal et al., 2001a). However, radiation therapy of cancer as the elevated antioxidant status of irradiated tumors is likely to limit the effectiveness of radiation dose and adversely affect the therapeutic gain (Agrawal et al., 2001a). Some serious impactions as the increased radiation-damage of the distant normal organs (due to tumor burden) is likely to adversely affect the therapeutic gain (Agrawal et al., 2001b).

Salonestemma Argel (SA) is a shrub occurring in wiled state in Egypt and Sudan. The herb of the plant locally called El Hargal (Elhurir et al., 1987). The natives prepare decoctions from the leaves and branches for treatment of various colics and pains (Elhurir et al., 1987).
The Ehrlich ascites tumor cell is a spontaneous murine mammary adenocarcinoma (Ehrlich and Apolant, 1905) adapted to ascites form (Loewenthand and Jahn, 1932) and carried in outbred mice by serial intraperitoneal (i.p.) passage.

For developing countries the use of endogenous medicinal plants as cures against cancers is attractive. This study was therefore designed to study the effect of Salenostemma Argel (SA) leaves (aqueous extract) either alone or combined with 6 Gy of γ-radiation exposure to evaluate its antitumor activity against Ehrlich Carcinoma (EC) bearing mice.

MATERIALS AND METHODS

Adult male Swiss albino mice of 8 weeks old and 22-25 g weight purchased from the breeding unit of the Egyptian Organization for Biological Products and Vaccines (Cairo) were used in this study. The animals were maintained on a commercial standard pellet diet and tap water ad libitum. Animal maintenance and treatments were conducted in accordance with the National Institute of Health Guide for Animal, as approved by Institutional Animal Care and Use Committee (IACUC).

Radiation facility: Whole body gamma irradiation of animals was performed using a Canadian 137Cs Gamma Cell-40 at the National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt; at a dose rate of 0.61 Gy min⁻¹. Rats were exposed to 6 Gy whole body γ-radiation delivered as a single dose.

Tumor transplantation: A cell line of Ehrlich Ascites Carcinoma (EAC) was used in this study. The parent line was supplied from Egyptian National Cancer Institute (NCI), Cairo University. The tumor line was maintained in the experimental female Swiss albino mice by weekly intraperitoneal injection of 2.5 millions cells per mouse. The EAC cells were counted before intraperitoneal injection using the bright line haemocytometer and dilution was done using physiological sterile saline solution. The desired numbers of cells were injected in a volume of 0.2 mL. To assess Ehrlich Solid Tumor, 0.2 mL EAC cells (2.5×10⁶cells/mouse) were inoculated intramuscularly in the right thigh of the lower limb of female mouse.

Extraction of Salenostemma Argel (SA) leaves: The leaves of SA was free from the other parts of the plant and crushed by hand, then 10 g of the leaves extracted with 100 mL of dis. Water in water bath for 90 min., then the volume was adjusted to 100 mL by passing hot water through the residue. The extract gavages administrated to experimental animals at the doses of 15 mg kg⁻¹ b.wt./day x 3/ week for three weeks.

Experimental design: Aqueous extract of SA either alone or combined with 6 Gy of γ-radiation exposure were tested to evaluate its antitumor activity against Ehrlich Carcinoma (EC) bearing mice. Salenostemma Argel (SA) gavages administrated to experimental animals 24 h and 7 days after Tumor Inoculation (ATI). γ-radiation exposure was done 7 days ATI. The animals were randomly divided into seven sets; Set 1: Normal mice; Set 2: Mice bearing EC. Set 3: Mice bearing EC exposed to γ-radiation 7 days ATI. Set 4: SA treated mice bearing EC 24 h ATI; Set 5: SA treated mice bearing EC 7 days ATI. Set 6: SA treated mice bearing EC 24 h ATI and exposed to γ-radiation 7 days ATI. Set 7: SA treated mice bearing EC and exposed to γ-radiation 7 days ATI. 24 h after the last treatment the mice were sacrificed.

Chemosensitivity of SA: To study the Chemosensitivity of SA extract on Ehrlich ascites carcinoma cells (EACC) 10 animals of female Swiss albino mice was transplanted with EACC and each mouse was day per day forced to ingest orally via a stomach tube about 0.2 mL of hot water SA extract. After one week samples of EACC cells were taken and the number of EACC was calculated for each animal in each week.

Tumor volume monitoring: The growth of tumor was monitored throughout the experiment with the tumor volume being measured regularly twice or thrice weekly using Vernier calipers and represented in terms of tumor volume. The tumor volume was estimated using the following formula: Tumor volume (mm³) = 4(A/2) (B/2)²·0.25 A²B², where A is the major axis and B is the minor axis (Ghoneum et al., 2008). The mean tumor volume with the corresponding standard error was calculated in each experimental group. Three weeks ATI experiment was terminated. At the termination of the experiment, the animals were sacrificed.

Histopathological examination: At the time of sacrifice, the tumours and livers were excised from the animals. Samples from each of liver and tumour tissues were fixed in 10% formalin and embedded in paraffin. Sections of tissues were stained with Hematoxylin and eosin.

Apoptosis and necrosis examination: For Apoptosis and Necrosis examination according to Bank (1988) fluorescence microscopy was used. Deparaffinization was done by immersing tumor sample slides in 3 changes of
xylene for 5 minutes each followed by washing in graded alcohol as follows: 100, 95, 80 and 50% for re-hydration. Two changes for 3 minutes in each alcohol concentration were done. Then, they were rinsed in 3 changes of PBS. Afterwards, slides were directly incubated in (5 μg mL⁻¹ of propidium iodide and 50 μg mL⁻¹ of acridine orange in phosphate-buffered saline) in dark for 1 h at 4°C temperature.

The preparation of tissue samples: After cervical decapitation of mice, liver and tumor tissues were sampled and washed with 0.9% NaCl solution and stored at -20°C till biochemical analysis.

Assay of reduced glutathione (GSH): GSH concentration was measured by the method of Moron et al. (1979). Briefly, proteins were precipitated by 25% TCA, centrifuged and the supernatant was collected. The supernatant was mixed with 0.2 M sodium phosphate buffer pH 8.0 and 0.06 mM DTNB and incubated for 10 min at room temperature. The absorbance of the sample/s was read against the blank at 412 nm in a UV-Visible double beam spectrophotometer and the GSH concentration was calculated from the standard curve.

Assay of malondialdehyde (MDA): MDA was measured by the method of Buege and Aust (1978). Briefly, the homogenate was mixed with TCA-TBA-HCl and heated for 15 min in a boiling-water bath. After centrifugation the absorbance was recorded at 535 nm using a UV-Visible double-beam spectrophotometer.

Assay of SOD: The activity of SOD in tissue was assayed by the method of Kakkar et al. (1984). The assay mixture contained 1.2 mL sodium pyrophosphate buffer (pH 8.3, 0.025 mol L⁻¹), 0.1 mL phenazine methosulfate (186 mmol L⁻¹), 0.3 mL nitroblue tetrazolium (300 mmol L⁻¹), 0.2 mL NADH (780 mmol L⁻¹) and diluted enzyme preparation and water in a total volume of 3 mL. After incubation at 30°C for 90 sec, the reaction was terminated by the addition of 1.0 mL of glacial acetic acid. The reaction mixture was stirred vigorously and shaken with 4.0 mL n-butanol. The color intensity of the comogen in the butanol layer was measured at 560 nm against n-butanol.

Assay of CAT: Catalase was assayed according to the method of Maebly and Chance (1954). The estimation was done spectrophotometrically following the decrease in absorbance at 230 nm. The tissue was homogenized in M/150 phosphate buffer (pH 7.0) at 4°C and centrifuged at 5000 rpm. The reaction mixture contained 0.01 M phosphate buffer (pH 7.0), 2 mM H₂O₂ and the enzyme extract. The specific activity of catalase is expressed in terms of units/mg protein. A unit is defined as the velocity constant per second.

Statistical analysis: Statistical analysis for obtained results was carried out with the aid of the SPSS computer software program.

RESULTS

Chemosensitivity of SE extract: As shown in Table 1 when SA extracts were administrated to mice the numbers of EACC's in tumor-bearing mice were significantly reduced. A non significant change in viable cell no. was recorded after one week. However SA extracts appear to activate EACC tumor cell death possibly after two weeks.

Tumor volume: Mice-bearing EC were gavages with SA either 24 h or 7 days of tumor cells inoculation and/or γ-radiation exposure up until day 21. Antitumor activity was assessed by time interval measurements of changes in TV during the experimental time course. Figure 1 shows that gavages of mice with SA either 24 h or 7 days ATI or exposure to γ-radiation 7 days ATI caused a continuous delay of tumor volume recorded 317.000±28.40, 274.200±27.00 and 274.200±10.47 mm³, respectively compared with control level 608.75±54.70 mm³ on the 13th day ATI. A more pronounced delay in tumor volume recorded when experimental animals gavages administrated with SA either 24 h or 7 days ATI combined with exposure to 6 Gy of γ-radiation 7 days ATI. The tumor volume reached 204.850±18.85 mm³ and 157.933±15.16 mm³, respectively comparing to 118.25±95.00 control tumor volumes after 21 day of tumor inoculation.

Apoptotic and necrotic examination of the Ehrlich carcinoma: Apoptotic and necrotic examination of the Ehrlich carcinoma tumor under a fluorescent microscope was evaluated in Fig. 2. Control section of Ehrlich carcinoma represent no viable tissue (green cells) with no zones of necrosis (orange cells) or apoptosis (yellow cells) (Fig. 2a). Treatment of female mice bearing Ehrlich carcinoma tumor 24 h. ATI for 3 weeks with SA represented viable tissue (green cells) with no zones of necrosis (orange cells) but with high and wide zones

Table 1: Effect of the extracts on the number of viable cells in transplanted mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>One week (- +10%)</th>
<th>Two weeks (- +10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cont. E</td>
<td>47±9.22.51</td>
<td>88±3.90</td>
</tr>
<tr>
<td>E+SA</td>
<td>47±4.69</td>
<td>81±2.92</td>
</tr>
</tbody>
</table>

Each value represents the Mean±SD and mean of three replicates.
Fig. 1: Effect of SA and/or γ-radiation on tumor volume of Ehrlich carcinoma

Fig. 2: Fluorescent photomicrographs of sections in solid Ehrlich carcinoma (SEC). (a) Section in normal SEC. (b and c) Section in SEC treated by SA 24 hr ATE. (d and e): Sections in SEC treated by SA 7 days ATE

apoptotic cells (yellow cells ▲) (Fig. 2b and c). Less effect were observed in tumor tissue section when experimental animals began gavages with SA on the 7th day ATI represent a viable tissue (green cells) with moderate sporadic apoptotic cells (yellow cells ▼) (Fig. 2e) but with multiple vacuoles (▲) (Fig. 2d).

Exposure of the experimental animals to 6 Gy of γ-radiation on the 7th day ATI predict viable tissue observed as green cells with sporadic apoptotic yellow cells (Fig. 3a, b) after 3 weeks from radiation exposure. In the tumors extirpated from animals treated with SA 24 h. ATI for 3 weeks and exposed to 6 Gy of γ-radiation on the 7th day ATI extensive high and wide zones of apoptotic cells (▲) with presence of some vacuoles (▲) was observed (Fig. 3c, d). While in the group treated with SA on the 7th day ATI and exposed to 6 Gy of...

Fig. 3: Fluorescent photomicrographs of sections in solid Ehrlich carcinoma (SEC). (a and b) Section in SEC subjected to \(\gamma \)-radiation 7 days ATE. (c and d) Section in SEC treated by SA 24 h ATE and subjected to \(\gamma \)-radiation 7 days ATE. (e and f) Sections in SEC treated by \(\gamma \)-radiation and SA 7 days ATE.

Table 2: Effect of SA and/or \(\gamma \)-irradiation on antioxidant parameters of tumor tissue in mice bearing EC

<table>
<thead>
<tr>
<th>Groups</th>
<th>Lipid peroxides ((\mu)g g(^{-1}) tissue)</th>
<th>Reduced glutathione ((\mu)g g(^{-1}) tissue)</th>
<th>Catalase ((\mu)mol g(^{-1}) tissue)</th>
<th>Superoxide dismutase ((\mu)g g(^{-1}) tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>111.54±4.86</td>
<td>67.70±0.67</td>
<td>26.66±8.70</td>
<td>4.70±0.10</td>
</tr>
<tr>
<td>E+S 24 h</td>
<td>102.57±3.25</td>
<td>70.64±2.98</td>
<td>25.63±2.08</td>
<td>4.30±0.15</td>
</tr>
<tr>
<td>E+S 7 day</td>
<td>105.38±2.24</td>
<td>71.35±1.52</td>
<td>23.83±1.75</td>
<td>4.71±0.15</td>
</tr>
<tr>
<td>E+S+R 7 day</td>
<td>145.92±3.13</td>
<td>73.68±1.92</td>
<td>21.01±1.19</td>
<td>3.64±0.10</td>
</tr>
<tr>
<td>E+S+R 24 h</td>
<td>108.66±1.27</td>
<td>73.75±1.87</td>
<td>23.57±1.87</td>
<td>4.29±0.22</td>
</tr>
<tr>
<td>E+S+R 7 day</td>
<td>117.01±2.12</td>
<td>67.78±1.92</td>
<td>25.72±2.37</td>
<td>3.92±0.12</td>
</tr>
</tbody>
</table>

Results are presented as the Mean±SE. *Significant from Ehrlich group at \(p<0.05 \)

\(\gamma \)-radiation, no zones of necrosis (orange cells) were observed but with high and wide zones apoptotic cells (curved arrows) (Fig. 3e, f).

Effect of SA and/or \(\gamma \)-irradiation on antioxidant parameters: As shown in Table 2 the levels of lipid peroxidation in tumor tissue were not significantly changed when experimental animals treated with SA either after 24 h or 7 days of tumor inoculation compared to normal tumor level. However the exposure of the tumor bearing mice to 6 Gy \(\gamma \)-radiation 7 days ATI predict a significant increase \((p<0.05) \) in lipid peroxides in tumor tissue 21 days ATI. Combined treatment of tumor bearing mice with SA and \(\gamma \)-radiation exposure result in a non significant change in lipid peroxides in tumor tissue either for SA 7 days ATI or 24 h. ATI. Gavage administration of SA 24 h. ATI or 7 days ATI either alone or combined with \(\gamma \)-radiation exposure predict a non significant change in GSH and CAT. However, \(\gamma \)-radiation exposure either alone or combined with SA administration predict some ameliorative effect in SOD level compared to control tumor tissue level.

ROS formed in cancer tissues results in lipid peroxidation and subsequently to increase in malondialdehyde (MDA) level. Table 3 depicts the levels of MDA in liver tissue of experimental animals. In the present study, the levels of MDA were significantly \((p<0.05) \) increased in EC bearing animals when compared with control animals. After treatment with SA ameliorative effect in liver tissue was observed either for 24 h or 7 days ATI. Also, exposure to 6 Gy \(\gamma \)-radiation 7 days ATI predict a significant decrease \((p<0.05) \) in lipid peroxides in liver tissue compared to EC bearing mice. Combined treatments of EC bearing mice with SA 24 h. ATI followed by exposure to 6 Gy \(\gamma \)-radiation 7 days ATI.

A significant decline in GSH, CAT and SOD levels in the livers of tumor-bearing animals was observed compared to the normal control level. Also the exposure of the tumor bearing animals to 6 Gy of \(\gamma \)-radiation recorded the same effect. Gavages treatment of EC bears animals by SE either 24 h or 7 days ATI either or combined with \(\gamma \)-radiation exposure 7 days ATI resultant a significant amelioration in GSH, CAT and SOD levels in livers of EC bearing animals.
Table 3: Effect of SA and/or γ-irradiation on antioxidant parameters of liver tissue in mice bearing EC

<table>
<thead>
<tr>
<th>Groups</th>
<th>Lipid peroxides (μM g⁻¹ tissue)</th>
<th>Reduced glutathione (mg g⁻¹ tissue)</th>
<th>Catalase (μmol g⁻¹ tissue)</th>
<th>Superoxide dismutase (μg g⁻¹ tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>126.65±2.55²</td>
<td>23.73±1.32²</td>
<td>62.12±1.14⁻</td>
<td>531.22±8.61⁻</td>
</tr>
<tr>
<td>E</td>
<td>173.98±3.04⁻</td>
<td>15.61±2.01⁻</td>
<td>41.55±1.22⁻</td>
<td>322.40±3.84⁻</td>
</tr>
<tr>
<td>E+S 24 h</td>
<td>151.20±1.03³</td>
<td>19.97±1.01⁻</td>
<td>56.39±1.26⁻</td>
<td>389.09±5.59⁻</td>
</tr>
<tr>
<td>E+S 7 day</td>
<td>128.25±1.13³</td>
<td>22.69±0.71⁻</td>
<td>57.90±4.49⁻</td>
<td>426.63±7.89⁻</td>
</tr>
<tr>
<td>E+R 7 day</td>
<td>145.48±4.54⁴</td>
<td>15.68±0.59⁻</td>
<td>32.75±1.02⁴</td>
<td>352.63±3.69⁴</td>
</tr>
<tr>
<td>E+S+R 24 h</td>
<td>152.42±1.25⁵</td>
<td>20.94±1.05⁵</td>
<td>51.43±0.74⁵</td>
<td>403.74±1.05⁵</td>
</tr>
<tr>
<td>E+S+R 7 day</td>
<td>128.15±1.41⁶</td>
<td>19.16±0.66⁶</td>
<td>55.91±0.75⁶</td>
<td>438.30±6.11⁶</td>
</tr>
</tbody>
</table>

Results are presented as the Mean±SE. *Significant from control group at p<0.05. **Significant from Ehrlich group at p<0.05

Fig. 4: Photomicrographs of sections in solid Ehrlich carcinoma (SEC). (a) Section in normal SEC. (b) Section in SEC treated by SA 24 h ATE. (c and d) Sections in SEC treated by SA 7 days ATE. (E and E. X400)

Histopathological examination of the ehrlich carcinoma:
Histopathological examination of the Ehrlich carcinoma tumor under light microscope showed compact and aggregation of the tumor tissue cells spread within the muscular tissues. Ehrlich carcinoma tumor showed groups of large, round and polygonal cells, with pleomorphic shapes, hyperchromatic nuclei and binucleation. Several degrees of cellular and nuclear pleomorphism were seen. Mitosis, muscle invasion and coagulation necrosis were also noticed (Fig. 4a). Treatment of female mice bearing Ehrlich carcinoma tumor 24 h. ATI for 3 weeks with SA represented large area of apoptosis (1) hydropic degeneration (blocked arrow) and nuclear debris (▲) were also detected in tumor tissue section (Fig. 4b). Another effect was observed in tumor tissue section when experimental animals began gavages with SA on the 7th day ATI (Fig. 4c, d).

Highly degenerative effect was detected in tumor tissue section extirpated from animals exposed to 6 Gy of γ-radiation on the 7th day ATI (Fig. 5a). Tumor tissue section represented great area of apoptosis (1) in addition of some pyknotic nuclei (▲). In the tumors extirpated from animals treated with SA 24 h. ATI for 3 weeks and exposed to 6 Gy of γ-radiation on the 7th day ATI extensive areas of apoptosis were observed (1). In addition to the presence of remnant tumor cells contained pyknotic nuclei (▲) were detected (Fig. 5a, b). While in the group treated with SA on the 7th day ATI and exposed to 6 Gy of γ-radiation, apoptotic tumors (1) and nuclear debris (1) were observed (Fig. 5d, e).

Histological observations of liver: The present results demonstrated the normal polyhedral hepatocytes with granular cytoplasm in liver tissue. Each cell has a centrally located nucleus with one or two nucleoli in addition to a number of chromatin particles (Fig. 6a). Liver of animals bearing EC (Fig. 6b) showed alterations as Kupffer cells hyperplasia (curved arrow), intense ballooning degeneration of hepatocytes (▲), great aggregation of inflammatory cells filtration and Ehrlich tumor cells (1). Treatment of the experimental animals with SA 24 h. ATI for 3 weeks (Fig. 6c) represented increase in Kupffer cells
Fig. 5: Photomicrographs of sections in solid Ehrlich carcinoma (SEC) in mice subjected to γ-radiation. (a) Section in SEC subjected to γ- radiation 7 days ATE. (b and c) Section in SEC treated by SA 24 h ATE and subjected to γ-radiation 7 days ATE. (d and e) Sections in SEC treated by γ- radiation and SA and (f) days ATE. (H and E, X400)

Fig. 6: Photomicrographs of sections in liver of mice bearing SEC. (a) Section in normal liver. (b) Section in liver of mice bearing SEC. (c) Section in liver of mice bearing SEC treated by SA 24 h ATE and (d and e) Sections in liver of mice bearing SEC treated by SA 7 days ATE. (H and E, X400)

(1), decrease in amount of inflammatory cells (curved arrow) and some liver steatosis was also detected. Also the beginning of treatment of the experimental animals with SA on 7th days ATI (Fig. 6d, e) represented less effect in which some aggregation of inflammatory cells filtration and Ehrlich tumor cells (curved arrows) were detected.

Exposure of experimental animals bearing EC to 6 Gy of γ-radiation on the 7th day ATI the liver cells were filled with some cytoplasmic material and the tissue represent...
some vacuolisation (1). The size of the nuclei was essentially the same as that of normal cells and cells with two nuclei were considerably fewer than in tumor bearing animal group (Fig. 7a). Normal appearance in liver tissue was detected when female mouse bearing Ehrlich carcinoma gavages with SA 24 h. ATI for 3 weeks and exposed to 6 Gy of γ-radiation on the 7th day ATI (Fig. 7b). While, in the group treated with SA on the 7th day ATI and exposed to 6 Gy of γ-radiation, a well-developed hepatic cord was detected in addition to presence of ballooning degeneration observed in some hepatocytes (1) (Fig. 7c).

DISCUSSION

In recent years, there is an increasing awareness that certain naturally occurring compounds in plants and other sources, have protective effects against environmental mutagens/carcinogens and endogenous mutagens (Premkumar et al., 2004). It was shown that plant like SE which is a sharp occurring in wild state in Egypt noticed to have several glycoside used in treatment of various colics and pains (Eltailir et al., 1987). In the present study a pronounced delay in EC tumor volume was recorded when experimental animals gavages administrated with SA either 24 h or 7 days ATI which is advantages with the finding of Plaza et al. (2005) whom reported that SE contain 15-keto pregnane glycosides. The effect of these compounds on the VEGF-induced in Kaposi's sarcoma cell proliferation was tested and the results indicated that all the compounds reduced the cell proliferation in a dose-dependent manner. Also, Nasr-Allah et al. (2009) reported that hot water extract of SA significantly reduced Ehrlich ascites carcinoma cells induced tumor growth and delayed animal death by 29 days.

Also the exposure to γ-radiation 7 days ATI caused a continuous delay of tumor volume recorded due to radiation oxidative stress induction which reflected by the enhanced levels of peroxidative damage, DNA fragmentation, LDH activity and nitric oxide levels (Agrawal et al., 2001a). A benefit of ionizing radiation as a therapeutic tool is the possibility to apply it locoregionally thereby preventing systemic toxicity. However like chemotherapeutic agents ionizing radiation does not affect all target cells, which can lead to severe side effects in the surrounding tissue after the therapy. In addition there are large numbers of human malignant tumor cells that respond poorly to ionizing radiation. However, radiation dose to the tumor can not be increased as needed because of the normal tissue toxicity in the radiation field. Hence there is a need for chemical agents which upon contact with tumor cells increase their sensitivity to radiation thus minimizing large doses of radiation and also spare normal tissue from the combined toxic effects (Jagetiya and Venkatesha, 2005). In the present study more pronounced delay in tumor volume recorded...
when experimental animals gavages administrated with SA combined with exposure to γ-radiation in which the antitumor synergistic effect between radiation exposure and SA supplementation were detected.

Induction of apoptosis in tumor cells, a form of physiological death in unwanted or dysfunctional cells, is an appealing therapeutic approach (Wyllie, 1997). Treatment of female mice bearing Ehrlich carcinoma tumor 24h. or 7 days ATi for 3 weeks with SA represented high and wide zones apoptotic cells in tumor tissue. The results reported here suggested that hot water extracts of SE may have an immuno-modulatory potential associated with the content of phenolics, including flavonoids stimulating antiproliferation of tumor cells and appears to involve apoptosis-induced cell loss also (Nassr-Allah et al., 2009). Also the exposure to 6 Gy of γ-radiation on the 7th day ATi predict sporadic apoptotic yellow cells in tumor tissue due to induction and repair of DNA damage, cell cycle disturbances, programmed cell death, alterations in gene expression and signal transduction pathways (Maiti et al., 1997; Bhattacharya, 2001). Induction and repair of DNA damage are central among the several molecular targets for modifying cellular radiation responses and most often correlated well with cell death (Iliaakis, 1991; Kharma and Jackson, 2001). Also, radiation exposure produces peroxidation on biological membranes. Peroxidation brings about changes in the structure and functions of tumor membranes (Leyko and Bartosz, 1986). This oxidative damage of membranes is also closely linked with radiation induced apoptosis (Ramakrishnan et al., 1998).

Gavages treatment of EC bears animals by SE either 24 h or 7 days ATi combined with γ-radiation exposure recorded high and wide zones apoptotic cells in tumor tissue which predict the synergistic effect of SE and γ-radiation exposure in resulting tumor regression.

The results of functional tests together with histological observations suggest that either γ-radiation exposures or Ehrlich tumour inoculation treatments leads to serious changes in histology of mice organ tissues (El-Tahawy et al., 2009). The increased formation of lipid peroxides and associated reactive oxygen species leads to damage in membrane integrity and other pathological changes.

Lipid peroxidation, an autocatalytic free radical chain propagating reaction, is known to be associated with pathological conditions of a cell. Malondialdehyde (MDA), the end product of lipid peroxidation, was reported to be higher in cancer tissues than in nondiseased organ (Yagi, 1987). In the present study SA treatment either after 24 h. or 7 days of tumor inoculation predicts a non significant change in lipid peroxidation level of tumor tissue. However the exposure of the tumor bearing mice to 6 Gy γ-radiation predict a significant increase in lipid peroxides in tumor tissue context with the finding of Agrawal et al. (2001a) whom reported that Radiation induced oxidative stress in Ehrlich solid tumor in mice.

The previous revealed that γ-radiation induced oxidative stress as reflected by the enhanced levels of peroxidative damage in Ehrlich solid tumor in mice (Agrawal et al., 2001a) and SA was an immunomodulatory components containing phenolics, including flavonoids play a role in oxidation inhibition (Nassr-Allah et al., 2009). So the combined treatments of tumor bearing mice with SA and γ-radiation exposure resultant a non significant change in lipid peroxides in tumor tissue.

In the event of generation of O2•− in the liver as a distant organ, due to oxidative stress caused by the tumor burden the levels of MDA were significantly increased in EC bearing animals when compared with control animals (Agrawal et al., 2001b). SA treatment showed ameliorative effect in liver tissue was predicted due to antioxidant activity of SA (Nassr-Allah et al., 2009). Also, exposure to 6 Gy γ-radiation predict a significant decrease in lipid peroxides in liver tissue compared to EC bearing mice which may be due to the radioreponse of antioxidant enzymes which seemed to be significantly different in the liver of tumor burdened mice compared to controls (Agrawal et al., 2001b). Also, the effect was recorded when experimental animals gavages administrated with SA combined with exposure to γ-radiation.

A non significant change in GSH and CAT levels in tumor tissue were predicted after gavages administration of SA 24 h. ATi or 7 days ATi either alone or combined with γ-radiation exposure predict a non significant change in GSH and CAT which explain the more pronounced delay in tumor volume. However γ-radiation exposure either alone or combined with SA administration predict some ameliorative effect in SOD level compared to control tumor tissue level context with the finding of Agrawal et al. (2001a).

Glutathione, a potent inhibitor of the neoplastic process, plays an important role in the endogenous antioxidant system. It is found in particularly high concentration in the liver and is known to have a key function in the protective process. Excessive production of free radicals resulted in oxidative stress, which leads to damage to macromolecules, for example, lipid peroxidation in vivo (Sinclair et al., 1990). In our study a significant decline in GSH, CAT and SOD levels in the livers of tumor-bearing animals was observed compared to the normal control level. The decrease in SOD activity in EAC bearing mice may be due to loss of Mn2+ containing SOD.
activity in EAC cells and the loss of mitochondria, leading to a decrease in total SOD activity in the liver (Sun et al., 1989). Also the inhibition of SOD and CAT activities may be a result of tumor growth (Sinclair et al., 1990).

Also, the exposure of the tumor bearing animals to 6 Gy of γ-radiation predicts the same effect. Gavages treatment of EC bears animals by SE either 24 h or 7 days ATI either or combined with γ-radiation exposure 7 days ATI result in a significant amelioration in GSH, CAT and SOD levels in livers of EC bearing animals.

Histologically Treatment of female mice bearing Ehrlich carcinoma tumor 24 h, 7 days ATI for 3 weeks with SA represented large area of apoptosis, hydropic degeneration and necrosis in tumor tissue section. Ariens et al. (1976) reported that tissue toxicity usually manifests itself, especially in the histological preparation, in the form of cell degeneration accompanied by formation of large vacuoles, accumulation of fat and tissue necrosis which predict the toxicity of SE on tumor tissue (Nass-Allah et al., 2009). Exposure to 6 Gy of γ-radiation revealed a highly degenerative effect great areas of apoptosis in addition of some pyknotic nuclei, the increased formation of lipid peroxides associated with reactive oxygen species leads to damage in membrane integrity and other pathological changes (El-Tahawy et al., 2009).

Due to the synergistic effect of SE and γ-radiation exposure in resulting tumor regression, tumors extirpated from animals treated with SA 24 h or 7 days ATI for 3 weeks and exposed to 6 Gy of γ-radiation on the 7th day ATI extensive areas of apoptosis, presence of remnant tumor cells contained pyknotic nuclei and nuclear debris were recorded.

Liver of animals bearing EC showed alterations as Kupffer cells hyperplasia, intense ballooning degeneration of hepatocytes, great aggregation of inflammatory cells filtration and Ehrlich tumor cells. This finding context with the finding of Samia and Fatma (2009). Ehrlich tumor cells infiltration may be due to tumour cells proliferation and move to invade the internal organs (Chakmarter et al., 2007). Great aggregation of inflammatory cells may be due to disorganization of the cytoplasm (Hashimoto et al., 1995), or more probably because of mitochondrial degeneration, ballooning degeneration of hepatocytes believed to be caused by lysosomal enzymes and hydration (Fukuda et al., 1993).

Treatment of the experimental animals with SA 24 h ATI for 3 weeks exhibited a pronounced antitumor effect represented increase in Kupffer cells and decrease in amount of inflammatory cells. Increase in Kupffer cells increase their anti-tumor effect via increasing the production of NO, TNF and IFN and these cytotoxic molecules inhibit the growth of tumor by damaging cellular DNA and inducing apoptosis (Chen et al., 2002). The presence of inflammatory suggests a possible relationship with tumor angiogenesis. Therefore the decrease in its number meant the decrease in tumor progression (Cervello et al., 2005).

Exposure of experimental animals bearing EC to 6 Gy of γ-radiation on the 7th day ATI the liver cells were filled with some cytoplasmic material and the tissue represent some vacuolisation. According to Mollendroff (1973), vascular formation is a cellular defense mechanism against substances injurious to cells. In such a case, these substances were segregates in the vacuoles and were thus prevented from interfering with cellular metabolism.

Normal appearance in liver tissue was detected when female mouse bearing Ehrlich carcinoma gavages with SA 24 h. ATI for 3 weeks and exposed to 6 Gy of γ-radiation on the 7th day ATI. While in the group treated with SA on the 7th day ATI and exposed to 6 Gy of γ-radiation, a well developed hepatic cord was detected in addition to presence of ballooning degeneration observed in some hepatocytes.

The available data from in vitro tests and in vivo animal toxicity studies indicate that SA (1.5 mg kg⁻¹ b.wt) has a protective action against radiation and/or tumor-induced toxicity as evidenced by the lowered tissue lipid peroxidation and elevated levels of the enzymes and non-enzymatic antioxidants in liver. Combined treatment of tumor with SA and radiation enhances oxidative stress and cytotoxicity in tumor cells. SA protects normal cells against radiation damage. This may offer potential therapeutic benefit, which warrants clinical study for application in cancer radiotherapy. Further studies are required to examine the clinical use and exact mechanisms behind a possible protective effect of SA.

REFERENCES

