Pharmacological Evaluation of an Ethnomedicinal and Endangered Desert Plant: *Mimosa hamata*

*Nakuleshwar Dut Jasuja, Richa Saxena, Subhash Chandra, Shilpa Bhargava and S.C. Joshi
1School of Science, Suresh Gyan Vihar University, Jagatpura, Jaipur-302017, (Raj.), India
2Jayoti Vidyapeeth Women's University, Jaipur-303007, Rajasthan, India
3Department of Zoology, University of Rajasthan, Jaipur-302004, India

Abstract: Plant derived medicinal products have been used for centuries in every culture throughout the world. *Mimosa hamata* possesses a vast ethnomedicinal history of heuristic medical value. Ethnomedicinal use of *Mimosa hamata* has been known since immemorial and this plant was used to cure diseases and to maintain good health. *M. hamata* whole plant are used in traditional systems of medicine for treating various diseases. *M. hamata* exhibited higher antioxidant, antibacterial, antifungal and antiviral activities. Some bioactive constituents of this plant were thoroughly reviewed and discussed based on literatures. *M. hamata* has been claimed as folk medicinal plant but little is known about the phytochemicals and pharmacognostical information. There is a need to review this plant in order to provide scientific information for its application in traditional and biological medicinal system.

Key words: *Mimosa hamata*, ethnomedicine, traditional medicine, bioactive

INTRODUCTION

Plants are important source of phytochemicals and phytopharmaceuticals, used to prepare various herbal drugs. The numbers of plants are used as folk remedies in different countries and are source of many potent and powerful drugs or natural product medicines (Srivastava et al., 1996, Raja et al., 2010).

A variety of secondary metabolites are found in plants which may have useful effect for mankind (Kamboj, 2000). The present study was focused to evaluate the bioactive compounds and beneficial uses of *M. hamata*. Plants play important role in Indian traditional system of medicines (Iwu et al., 1999). However, several secondary metabolites such as alkaloids, flavonoids, steroids, phenolics, terpenes, volatile oils etc., are usually present in plants and some phytocompounds are responsible for the pharmacological effects (Vyas et al., 2012). Herbal products have proved to be reliable source of large amount of drugs which are used in the treatment of numerous diseases. Synthetic drugs are effective but they fall behind the undesired properties and may generate frequent side effects. So, herbal drugs have no side effect, affordable and easily accessible than synthetic drugs (Jasuja et al., 2012a, b). However, the clinical study is mandatory to herbal drugs before being recommended for human being. According to the evaluation of WHO (2003), 80% people of the world still depend on traditional medication system for primary health care (Santos et al., 1995; Bizimyenyera et al., 2007). Recently, researchers are emphasizing on valuation and description of phytoconstituents of plant against various diseases based on their traditional claim given in ayurveda. Isolation and identification of the bioactive compounds of plants have always been a challenging task for researchers (Bairwa et al., 2011). *Mimosa hamata* is an Ayurvedic plant which belongs to family Mimosaceae (Touch me not) which is used in several traditional medicines to cure various diseases. In Hindi, the plant is commonly known as chilati, Jinni, jini, ali, alali, korindun, gulabi babul, lipti, bander ki rakh and hooked Mimosa. The herb is a largely shrub and small tree distributed throughout the region of India. The genus of *M. hamata* has about 400 species distributed in the world (Barneby, 1992). The whole plant of *M. hamata* is very useful for various pharmacological and biological activities. A paste of leaf powder are applied to burn, over glandular swelling and also used in dressing for sinus, sores and piles (Nadkarni and Nadkarni, 1954). The whole plant of *M. hamata* are generally used for urinary complaints and used as a tonic against general weakness (Jain et al., 1997a; Katewa and Galav, 2005). Keeping in view the tremendous pharmacological activities and wealth of literature available, *M. hamata* plant may be utilized to alleviate the symptoms of variety of diseases. Moreover, crude extract of *M. hamata* has several

Corresponding Author: Dr. Nakuleshwar Dut Jasuja, School of Sciences, Suresh Gyan Vihar University, Jagatpura, Jaipur-302017, (Raj.) India Tel: +91-9414658277 Fax: +91-141-2796255
medicinal application, herbal drugs can be developed after extensive exploration of its bioactivity, mechanism of action and pharmacotherapeutics. Now-a-days *M. hamata* has become a rare species in aravalli and semi-arid zones of Rajasthan. This plant was commonly found earlier but now it became an endangered species in Delhi and other regions of India. For the protection of plant, it is necessary that seeds of rare, endemic and endangered plant *M. hamata* must be collected in proper season and implant in nursery for germination. Healthy plantlets will be then transferred in to the field for better plantation. The literature and availability of *M. hamata* especially in Rajasthan (India), makes it an attractive plant for further research.

Plant profile

Mimosa hamata willd

Taxonomy: *Mimosa hamata* falls under the scientific classification as follows:

Scientific classification:

- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Order: Fabales
- Family: Mimosaceae
- Genus: *Mimosa*
- Species: *Hamata*
- Synonym: *Mimosa armata*

- **Habit:** Shrub
- **Habitat:** Moist deciduous forest
- **Ecological status:** Rare
- **Distribution:** It is found in open sandy places throughout the area, often gregarious and abundant. *Mimosa hamata* mainly distributed in the arid zones of Rajasthan, Punjab, Delhi, Central and South India (Fig. 1)

![Location map of *M. hamata* distribution in India](image)

Fig. 1: Location map of *M. hamata* distribution in India. *M. hamata* plant was collected from Sariska National Park located at East Longitude -76°26′13″, North Latitude-27°19′3″, 450-500 m above sea level, weather: Temp. 5-28°C in winter, Alwar District, Rajasthan, India

53
Fig. 2: Different parts of *M. hamata*

Morphology: A much branched, small size tree, armed shrub; branches downy with numerous; straw coloured, curved or straight prickles. Leaves 2-pinnate, 1.5-5 cm long; main rachis pubescent, sometimes prickly; stipules 3 mm long, hairy; pinnae 3-6 pairs, 0.6-2.5 cm long, leaflets 12-24, leaflets acute, mucronate, more or less glabrous rounded at base; petiolaris very short. Calyx 2.5 mm long, shortly toothed. Corolla pink, 3 mm long, divided nearly half way down; lobes ovate-oblong, stamens 8. Ovary stalked, pubescent. Pods 5-7×1.5 cm, falcate, consisting of 4-8, one-seeded joints, pubescent joints falling off the persistent, prickly sutures. Seeds 6-4 mm, chestnut-brown (Fig. 2). Flowering and fruiting time period of *M. hamata* plant are August to November and December to February according to Indian conditions. *M. hamata* have botanical variations among other species of *Mimosa* such as *M. pudica* and *M. himalayana* Syn. *M. rubiculosis* (Cairns, 1980; Bhandari, 1990; Agharkar, 1991; Verma *et al.*, 1993; Singh *et al.*, 1996; Paranjpe, 1999).

Constituents: The tremendous potential of medicinally important plant contain a broad range of bioactive compounds such as some bioactive constituents have been reported in the different parts of *M. hamata*. It contains an alkaloid mimosine, tannin, ash, calcium oxalate crystals, nitrogen, phosphorus, potash and calcium. Leaf powder of this plant also has albuminoids, carbohydrates, fiber, ash, mimonoside A-C (Fig. 3), gallic acid (Fig. 4) and ethyl gallate (Fig. 5). 4-Ethylgallic acid has been identified.

Fig. 3: Mimonoside A, B, C (Jain *et al.*, 1997a)

Fig. 4: Gallic Acid (Mehta *et al.*, 1988)
from the flowers of *M. hamata* and *M. rubiculis* and bark contains tannin (Hussain *et al.*, 1979; Mehta *et al.*, 1988; Jain *et al.*, 1997a). Hydroxy-and polyhydroxybenzoic acid are also found in seeds of *M. hamata* (Khadem and Marles, 2010). A new triterpenic saponin A and B isolated from the roots of the *Mimosa hamata* wild has been assigned a partial structure 3-O-L-arabinosyl-D-glucosyl morolic acid (Fig. 6) (Jain and Arora, 1997) and 3-O-D-glucosyl-L-rhamnosyl morolic acid (Fig. 7) (Jain *et al.*, 1997b) on the basis of chemical and spectral studies. Phytochemical compound saponins are isolated from methanolic extract of roots of *M. hamata* have antimicrobial activity against bacteria and fungi and also active against viruses.

Ethnomedical uses: *Mimosa hamata* (Fig. 8) is one of the indispensable medicinal plant used in the Indian system of medicine (Ayurveda) for the treatment of diverse diseases such as fever, diarrhea, coagulant, dysentery, jaundice, wounds, piles, tonic in urinary complaints, blood-purifier and paste of leaves is applied over glandular swellings and paste of roots with linum oil and guggul is unguent (Gupta *et al.*, 2010). Seed powder and leaf juice of *M. hamata* boiled in buffalo milk is given as a tonic in general weakness and also sexual debility in males. Fresh leaf extract is applied to check bleeding from the wound and ulcer (Singh and Pandey, 1998; Katewa and Galav, 2005). Some study reported that oral administration of root juice (10-12 mL) twice a day for three days may be cure in diarrhea *M. hamata* plant is used in different areas especially in Maharashtra as a ritual attached with child birth. On the 5th day of child birth, a diet is worshipped using leafy twig of *M. hamata* (Arati) and *Ziziphus mauritiana* (Borati) (Pawar and Patil, 2008). On the basis of ethnomedicinal evidence, different parts of this plant are used in the treatment of various diseases (Table 1).

Pharmacological activity

Antimicrobial activity: Medicinal plants are rich source of therapeutically useful phytochemical constituents that have the potential of being developed into potent antibacterial and antifungal agents (Bessong *et al.*, 2006;
Table 1: Beneficial uses of *M. hamata*

<table>
<thead>
<tr>
<th>Part used</th>
<th>Medicinal uses</th>
<th>Mode of administration</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>Paste of roots with linum oil and guggal is ingestant</td>
<td>External</td>
<td>Gupta et al. (2010),</td>
</tr>
<tr>
<td></td>
<td>Have contraceptive efficacy used in leucorrhoea, menorrhagia, stomach pain, and</td>
<td></td>
<td>Meena and Rao (2010),</td>
</tr>
<tr>
<td></td>
<td>in diarrhea</td>
<td></td>
<td>Harinar and Kottresha (2012)</td>
</tr>
<tr>
<td></td>
<td>The roots are tied to the arms and keep it wet with water for the treatment of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jaundice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed</td>
<td>Seed powder boiled in buffalo milk and used as a tonic in general weakness and</td>
<td>Oral</td>
<td>Shekhawat and Anand (1984),</td>
</tr>
<tr>
<td></td>
<td>also sexual weakness in males</td>
<td></td>
<td>Bhandari (1990), Singh and</td>
</tr>
<tr>
<td></td>
<td>Used as a tonic for blood purification</td>
<td></td>
<td>Pandey (1998), Katewa and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galar (2005), Patel (2010),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sharma and Kumar (2011),</td>
</tr>
<tr>
<td>Stem</td>
<td>A glass of infusion of fresh stem is administered against snake bite</td>
<td>Oral</td>
<td>Pawar and Patil (2008)</td>
</tr>
<tr>
<td>Leaf</td>
<td>Used for chronic cough and pharyngitis</td>
<td>External</td>
<td>Jain (1991), Singh and</td>
</tr>
<tr>
<td></td>
<td>Paste of leaves used externally for leprosy</td>
<td></td>
<td>Pandey (1998), Bhosle et</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>al (2009), Bagul and Patil</td>
</tr>
<tr>
<td></td>
<td>Applied to check bleeding from the wound and ulcer</td>
<td></td>
<td>Katewa and Galar (2005)</td>
</tr>
<tr>
<td>Flower</td>
<td>Used in menorrhagia, leucorrhoea, stomach pain and in diarrhea</td>
<td>External</td>
<td>Meena and Rao (2010)</td>
</tr>
<tr>
<td>Whole plant</td>
<td>Used in the treatment of skin disease</td>
<td>External</td>
<td>Maheswari et al. (2012)</td>
</tr>
</tbody>
</table>

Table 2: Antimicrobial Activity of *M. hamata*

<table>
<thead>
<tr>
<th>Activity</th>
<th>Part used</th>
<th>Name of extract</th>
<th>Microorganism</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial</td>
<td>Whole plant, callus tissue</td>
<td>Methanolic extract</td>
<td>Escherichia coli, Klebsiella aerogenes, Pseudomonas aeruginosa, Staphylococcus aureus</td>
<td>Positive</td>
<td>Hussain et al. (1979), Jain et al. (1997a), Jain et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqueous extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroform extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antifungal</td>
<td>Whole plant, callus tissue</td>
<td>Methanolic extract, Ethanol extract, Benzene extract, Aqueous extract, Chloroform extract Petroleum ether extract</td>
<td>Aspergillus niger, Fusarium moniliforme, Rhizoctonia bataticola</td>
<td>Positive</td>
<td>Hussain et al. (1979), Jain et al. (1997a), Jain et al. (2004)</td>
</tr>
<tr>
<td>Antiviral</td>
<td>Whole plant, callus tissue</td>
<td>Ethanol extract, Benzene extract, Aqueous extract, Chloroform extract Petroleum ether extract Methanolic extract</td>
<td>Herpes simplex, Poliovirus, Vesicular stomatitis</td>
<td>Positive</td>
<td>Jain et al. (2004), Jain and Arora (1997), Jain et al. (1997a)</td>
</tr>
</tbody>
</table>

Oba'emi et al., 2006). Several phytochemicals such as alkaloids, flavonoids, tannins, phenolic compounds, steroids, saponins and triterpenoids may also be used as antimicrobial activity which may be attributed to the beneficial properties of the plant (Rabe and van Stadin, 1997; Ramasamy, 2000; Santhi et al., 2006). Moreover, a crude ethanolic extract of aerial part of *Mimosa hamata* and deproteinized leaf extract showed their inhibitory effect against microbial organisms such as bacteria and fungi (Attia et al., 1972; Mukadam et al., 1976; Umalkar et al., 1977; Hussain et al., 1979; Ali et al., 2001) (Table 2). Jain et al. (2004) previously reported that medicinal plant such as *Mimosa hamata* (wild.) callus and leaf extracts showed considerable antimicrobial activity (Jain et al., 2004). Earlier study suggested that some other medicinal plants such as *Nerium oleander* and *Baliospermum axillare* leaf and callus extracts also showed antimicrobial activity (Singh and Sudharshana, 2003; Hussain and Gorsi, 2004).

Antiviral activity: According to Jain et al. (2004), ethanolic extract of *M. hamata* are found active agent against *Herpes simplex*, *Poliovirus* and *Vesicular stomatitis*. Petroleum ether and chloroform extracts were also exhibited potential effect against *V. stomatitis* and *H. simplex*. Earlier study revealed that in the bioefficacy of the extracts of whole plant were more effective than the fractions obtained from callus tissues. Methanolic extract of roots were also reported for their antiviral activities against Measles, Semicol forest, Herpes simplex and Vesicular stomatitis (Jain and Arora, 1997; Jain et al., 1997a) (Table 2).

Antioxidant activity: Antioxidant activity has been proposed to play a vital role in various pharmacological activities such as anti-aging, anti-inflammatory and antiatherosclerotic activity. An effective therapeutic strategy is used for the inhibition of free radical induced damage by the supplementation of herbal antioxidant drugs. Herbal products with their antioxidant activity have therapeutical potential as they can serve the purpose without any side effects that are often associated with synthetic antioxidants (Agharkar, 1991; Jain et al., 2005a; Baurwa et al., 2011). Methanolic extracts of this plant exhibited higher antioxidant activity with 6.5 μM L-1 RC value as compared to the dichloromethane extracts (Singh et al., 2009; Jain et al., 2005b). Singh and Jain (2012) also revealed that extract of leaves, stem, root and
seeds of M. hamata have the antioxidant potential. Antioxidant activity was determined by 2, 2-Di phenyl-1-picyrylhydrazyl (DPPH) assay and total phenolic content was estimated by using Folin-Cioclateu’s reagent of this plant. All tested extracts of different part of the plant possessed appreciable antioxidant activity but n-butanol extract of roots was significantly higher in total phenolic content (73.16±0.19 mg GAE/g Extract) and in antioxidant assay (IC₅₀ = 5 µg mL⁻¹). Moreover, n-butanol extract of roots have higher yield (85.6%) in comparison to all other tested extracts (Singh and Jain, 2012).

Aphrodisiac activity: Recently, modern life style and various environmental exposures affect male infertility. Sexual weakness in male or male infertility is increasing in all over the world. A modern medicine provides beneficial and effective treatment but some are produces negative effect on physiological processes. Plant derived drugs provides a safer way to solved various problems associated with male infertility. On the basis of traditional knowledge, Mimosa hamata are also used as a herbal aphrodisiac for providing ameliorating effect on sexual dysfunction. But M. hamata has not been clinically evaluated for their aphrodisiac activities. Many herbal aphrodisiac plants have 28.12% gap between traditional knowledge and pharmacological evidence (Mathur, 2012).

CONCLUSION

The whole plant of Mimosa hamata is very useful for various biological activities. Mostly leaves and seeds of M. hamata are used in the treatment of various human health problems in the form of traditional medicine system. This study insight the better understanding of this plant and provide beneficial health effects for consumption which may use as preliminary information and could be further studies for use in medicine. Further work is required to find out the bioactive compounds from this plant to exploit its maximum potential in the field of medicinal and pharmaceutical sciences for novel and fruitful application.

RECOMMENDATION

M. hamata is regarded as the good shrub for the medicinal purpose. This wild plant is entirely useful in various conditions. But, according to the review done, it is not spreaded all over the world. It may be found only some selected areas of the India and its pharmacological activities are not much explored. Only on the basis of traditional beliefs of ancient times, it is considered as medicinal plant. Therefore, in the coming future, this plant can be further explored for its activities to be proved and also attempts should be made to secure and cultivate this miraculous plant which will be beneficial to the society.

ACKNOWLEDGMENT

Authors are thankful to Jayoti Vidyapeeth Women’s University, Jaipur for providing a platform to carry out this study.

REFERENCES

