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ABSTRACT
This study was conducted to monitor and control aeration by means of an online Neural

Network (NN) of a Biological Aerated Filter (BAF). The BAF is an advanced drinking water
treatment system equipped with Dissolved Oxygen (DO), oxidation-reduction potential, pH,
ammonia and nitrate sensors. The main function of the BAF is to treat contaminated water by
simultaneously reducing the levels of ammonia and manganese to below permit limits. Aeration
was supplied to the BAF and controlled by a neural network. Real-time data was accurately
predicted by the NN with errors below 5% for all sensors. The bending point was apparently
created in DO neural network data when the simultaneous ammonia and manganese removals
were below limits. The NN program detected the bending point and immediately stopped the
aeration of the BAF. Hence, NN can optimize the aeration requirement and system performance,
shorten time demand and reduce consumption of manpower and electricity.

Key words: Aeration, neural network, real-time monitoring, biological aerated filter, simultaneous
ammonia and manganese removal

INTRODUCTION
More than one billion people around the world lack access to  an  improved  water  source

(WHO., 2003). This is because the water is contaminated with a high number of pollutants such
as organic carbon, nitrogen contents such as ammonia (NH4

+-N), nitrite (NO2G-N) and nitrate
(NO3G-N) and metals such as manganese (Mn2+), aluminium (Al3+), nickel (Ni2+), zinc (Zn2+) and lead
(Pb2+). The NH4

+-N produced from waste, sewage and garbage is a serious cause of water pollution
(Hasan et al., 2011a). In developing countries such as Malaysia, the presence of NH4

+-N in raw
water exceeds the Maximum Concentration Limit (MCL), which is below 1.5 mg LG1 (Hasan et al.,
2009). A high NH4

+-N level in raw water complicates the chlorination process because of the yield
of chloramines (Okoniewska et al., 2007). It also causes nervous system damage and deteriorates
the taste and odour of water (Markesbery et al., 1984). In addition, NH4

+-N in the water will reduce
the reflection of oxygen, eutrophication of surface water and increase toxicity to aquatic life
(Tekerlekopoulou and Vayenas, 2007). The Mn2+ in drinking water can also affect the human
nervous system. Its reaction with chlorine can introduce dirt and corrosion  into  water  distribution
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systems (Pacini et al., 2005). Therefore, it is necessary to develop a new water treatment system
which focuses on simultaneous NH4

+-N and Mn2+ removal in order to minimize plant shutdown
because of higher NH4

+-N and Mn2+ content in the water (Hasan et al., 2011b). This would also
reduce water shortage and interruption of everyday activities. The NH4

+-N and Mn2+ were focused
in this because these two pollutants always become a main problem in Malaysian drinking water
sources.

The Biological Aerated Filter (BAF) is the most suitable additional system in Drinking Water
Treatment Plants (DWTP) and is well known in wastewater treatment but not in drinking water
treatment (Hasan et al., 2011b, c, 2012, 2013). There is also a test involving combination of
conventional  care  and  treatment  through  successive  pre-oxygenation  treatments (You and
Chen, 2008). Its reactor is flexible and can remove suspended solids, especially in aerobic biological
treatment (Su et al.,  2007). The BAF is also capable of treating water with high organic  load
(Mann and Stephenson, 1997). Introducing BAF into conventional DWTP (coagulation, flocculation
and filtration) could enhance the performance and functionality of DWTP to produce safe drinking
water. The main function of this biofilter is to simultaneously remove NH4

+-N and Mn2+ from
contaminated raw water when it’s pollutes at high loading rate which is could not be treated by
current conventional drinking water treatment.

It is challenging to simultaneously remove NH4
+-N and Mn2+  from drinking water using a

single treatment system because of the different Oxidation-Reduction Potential (ORP), DO
concentration and pH required for oxidation of NH4

+-N than that of Mn2+. The NH4
+-N may

interfere with the operation of Mn2+ removal filters because too much oxygen is consumed by
nitrification, which results in mouldy, earthy-tasting water (WHO., 2003). When drinking water
contains both NH4

+-N and Mn2+, biological Mn2+ can only be removed after complete nitrification
due to the necessary evolution of the redox potential (Frischherz et al., 1985; Vandenabeele et al.,
1995; Harris et al., 1996) but it is not possible to remove simultaneously depending on the operating
and microorganism involves in the treatment process. The complicated removal of both pollutants
in a single treatment is time-consuming and expensive to operate and maintain. Therefore, by
controlling the simultaneous removal of NH4

+-N and Mn2+ through neural network, the system
operation of treatment can be automatically stopped. Most of the previous studies only focus on the
factors affected simultaneous removal itself but not on the control to predict and stop the treatment
once the complete removal of NH4

+-N and Mn2+ achieved. Moreover, by controlling the DO, ORP and
pH, the simultaneous NH4

+-N and Mn2+ removal may more effective and reduce the cost of the BAF
water treatment system compared with offline on/off system. This is because offline on/off system
are often time consuming, costly and sticky.

The neural network is based on the idea of neurons in the human brain. It can discover complex
formulas and has little to do with simulating intelligence. It can be applied in business, finance,
image processing (Srinivasan et al., 2005), control systems (Imtiaz et al., 2013), wastewater
treatment (Loh et al., 1995) and many more areas. The system is established in BAFs in order to
control aeration. The relevant bending points can be detected in DO, ORP and pH profiles but are
clearer in the DO profile. In this study, a neural network automatically controls the aeration
supplied to a BAF with a DO profile as its reference when the bending point is detected in the DO
profile. The BAF system is monitored in real time so that every piece of data can be recorded
without exception. The performance of removal can be improved as aeration into the system can
be stopped automatically after detection of bending points, thus saving time and reducing the cost
of operation and human supervision. The neural network can also predict the current value from
the real-time data for all parameters (DO, ORP, pH, NH4

+-N and NO3G-N).
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To our best knowledge, there is still no study on aeration control based on neural network in
BAF system for simultaneous NH4

+-N and Mn2+ removal. The main objective of this study is to
control aeration based  on  neural  network  prediction  data  that  were  developed  according to
real-time data. The aeration control was set to stop when the relevant bending points on the DO
pattern detected by the neural network indicated that NH4

+-N and Mn2+ had been removed to below
the permissible levels.

MATERIALS AND METHODS
Synthetic contaminated water: A Synthetic Contaminated Drinking Water (SCDW) was
prepared from tap water. The SCDW consisted of glucose (C6H12O6: 105±6 mg COD LG1), ammonium
sulphate (NH4)2SO4: 10±0.2 mg NH4

+-N/L), manganese chloride (MnCl2.4H2O: 0.35 mg Mn2+/L),
sodium bicarbonate (NaHCO3: 100 mg LG1), magnesium chloride (MgCl2.6H2O: 8 mg LG1), iron
chloride (FeCl3.6H2O: 0.3 mg LG1), calcium chloride (CaCl2.2H2O: 4.5 mg LG1) and potassium
dihydrogen phosphate (KH2PO4: 2.5 mg LG1). All the chemicals used were reagent grade salts
(Systerm, Malaysia). The water contamination levels as well as NH4

+-N and Mn2+ were simulated,
based on the real contaminations in Malaysian rivers (Hasan et al., 2011a). Furthermore, the
contamination of NH4

+-N in drinking water sources was also based on a report from the
Department of Environment (DOE), Malaysia (DOE., 2014) that in several rivers NH4

+-N
contamination was higher than 10 mg LG1.

Set-up and operation of BAF system: The designed BAF system consists of an EX9837 terminal
board, signal transmitters, RCCB, MCCB, control panel, rack, analysers of DO, ORP, pH, NH4

+-N
and NO3G-N sensors, compressor, tanks, reactor, pump, air valve, flow meter, Personal Computer
(PC), parallel cable and relay. Figure 1 shows the schematic diagram of the BAF system. The BAF
column which was made from transparent polyvinyl chloride (PVC) had a height (H) of 150 cm and
a diameter (D) of 16 cm with an effective working volume of 15 L. An adjustable stainless steel
mesh was located at a height of 120 cm (at sampling port 6: SP6) creating a 20 cm buffer zone to
prevent plastic media from being washed out during the backwash process. The BAF column was
partially packed with polypropylene media (floating type) with a designed dimension ratio (H/D)
of 0.625, density (ρ) of 888 kg mG3 and specific surface area (As) of 450 m2/m3. The floating media
type was used because it had a large surface area that was more suitable for biofilm attachment
and enhancement.

An EX9837 terminal board manufactured by TOPSCCC (Taiwan) was used to provide
communication between the PC (via serial port) and other peripherals such as pumps, sensors and
analysers. Probes for pH (Model PD1R1 GLI, USA), ORP (Model PD1R1 GLI, USA) and DO (Model
5400 GLI, USA) were connected to their respective GLI analysers (Model 33, USA) for respective
pH, ORP and DO measurement in the contaminated drinking water. NH4

+-N and NO3G-N were
measured by means of Swansensor NH4

+-N and NO3G-N Ion Selective Electrodes (ISEs) and
analyzed by SWAN meters (FAM: Ammonium, FAM: Nitrate, Switzerland).

The contaminated drinking water inside an influent tank was filled into the BAF reactor with
a peristaltic pump (Masterflex, USA) to occupy the BAF column in about 30 min. After the filling
period, the software program started the treatment operation and supplied aeration (air on)
throughout the BAF column (Fig. 2). It monitored online the values of DO, ORP, pH, NH4

+-N and
NO3G-N from the sensors located  inside  the  column.  The  software  analyzed  and  controlled  the
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Fig. 1: Schematic of BAF system

Fig. 2: Control strategy of aeration based on neural network programming

treatment operation by means of a neural network. When the  bending  point  of  DO  was  detected,
the program stopped the operation of aeration supply (air off) and consequently shut down the
whole operation. If the DO bending point was not detected, the air valve remained open until the
reaction was completed.

An air compressor (PUMA XN2040, Taiwan) was connected at the bottom of the BAF to provide
aeration with an optimum flow rate of 0.3 mL minG1  as  determined  from  a  previous  study
(Hasan et al., 2011b), to create an aerobic condition throughout the column. Moreover, an air
diffuser was used to distribute the aeration through the column to ensure homogenized conditions
of air transfer. Backwash was frequently operated every two weeks in a co-current manner to
remove the excessive accumulated biomass on the media to prevent the BAF column from clogging
and to maintain the biofilm activity inside. The backwash water flow rate was set at 10 L minG1 on
average and adjusted as required through the backwash valve and the air flow rate was maintained
at 0.3 L minG1. Backwash was performed according to the following procedures: (1) Air scouring for
about 5 min at the bottom of the column, (2) Simultaneous air and recycled  backwash  water  for
5 min  and  finally  (3)  Air  and  water  flow  stopped and column contents  allowed  to  settle  for
10 min before withdrawal of the backwash water from the column.
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Neural network design: NeuralWork Predict® (Version 3.24, USA) software is an advanced
modelling and data mining platform for building robust neural networks to analyze data, produce
knowledge and reveal complex or unknown relationships in data. A constructive method is used
to determine a suitable number of hidden  nodes  and  is  referred  to  as  cascade  learning
(Fahlman and Lebiere, 1990). Real-time data was used to design a model of a neural network
controller. Predict® selected testing and validation sets of real-time data. Then the selected data
was analyzed and transformed. After that, the key variables were selected to construct, train and
validate the network model. With more inputs and hidden layers, the neural network design
becomes more complicated. In NeuralWork Predict®, there is a function called FlashCode that can
be used to convert the model that has been designed into programming languages such as C++,
Visual Basic (VB) and FORTRAN (NeuralWare, 2002).

NeuralWork Predict® software  created  new prediction data of DO, ORP, pH, NH4
+-N and

NO3G-N for the BAF system based on real-time data. The inputs were DO, ORP, pH, NH4
+-N and

NO3G-N data and predicted value was the output. Figure 3 shows the neural network architecture
of the BAF system for simultaneous NH4

+-N and Mn2+ removal. NeuralWork Predict® selected
suitable inputs only for the respective parameters. Each parameter had different suitable inputs.

Software development: In the BAF system, a data acquisition card (EX92026, TOPSCCC,
Taiwan) is used as a middle man between software and hardware. The sensors (DO, ORP, pH,
NH4

+-N and NO3G-N) from the BAF send signals to the data acquisition card and then the software
converts those signals into values that represent sensor reading values. The Graphical User
Interface (GUI) is very important as it provides control and monitor functions for the BAF system.
The data measured by sensors can be monitored and the BAF operation controlled through the
GUI. The GUI is generated by Microsoft Visual Basic (version 6, USA) programming language. The
GUI of the BAF system can be seen in Fig. 4. The ‘Real-Time Meter’ shows the actual value of the
parameter reading and the ‘Neural Network Meter’ shows the predicted value. The graphs show
the patterns of real-time data that can display 1000 data at a time. All these data can be saved
inside the computer for further analysis. The acid, alkaline and air pumps can be controlled by
pressing the respective buttons inside the ‘Pump Control’ box. The pH value can also be set inside
the ‘Set pH’ box. The ‘Start/Stop’ button is used to start or stop the BAF system operation
manually. In this study, only the air pump's on and off buttons were used in order to control the
aeration supplied from the ‘Pump Control’ box.

Fig. 3: Neural network architecture
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Fig. 4: Graphical user interface of real-time and neural network prediction of biological aerated
filter system

Offline measurement
Analytical methods: Sampling was done at sampling point 6 (Fig. 1) and collected in 1 L plastic
bottles. A nitrate cellulose membrane filter measuring 0.45 µm (Whatman, USA) was used to filter
the excessive Mixed Liquor Suspended Solid (MLSS), according to  the  standard  method. The
NH4

+-N  was  analysed  through  the  Nesslerisation  method (Method  8038) at an  absorbance  of
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425 nm. Manganese concentration presented as Mn2+ was measured with  the  PAN  method
(Method 8149) at an absorbance of 560 nm. Nitrate (NO3G-N) was analysed through the Cadmium
Reduction Method (Method  8039) at an absorbance of 355 nm. All of the parameters were
measured with a HACH spectrophotometer DR/2010 (USA).

RESULTS AND DISCUSSION
Neural network prediction: The neural network predicted values of DO, pH, ORP, NH4

+-N and
NO3G-N parameters by creating a prediction model based on real-time data. Then, the program
predicted current data by using a neural network algorithm without referring to the real-time data.
As can be seen in Fig. 5, the values of predicted data were almost as accurate as the real-time data 
with  overall  errors  below  2.5%  for  DO, 0.8%  for pH, 1.5% for ORP, 3% for  NH4

+-N  and 3% for

Fig. 5(a-e): Profiles of real-time and neural network prediction values for (a) DO, (b) pH, (c) ORP,
(d) NH4

+-N and (e) NO3G-N
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NO3G-N. This showed that neural network prediction was a viable alternative for developing,
measuring and controlling the parameters of DO, pH and ORP in a BAF system for the
simultaneous removal of NH4

+-N and Mn2+ from drinking water.

Neural network control of BAF operation: The relevant bending points in DO, ORP and pH
need to be identified for automatic control of the BAF operation by the neural network. In this
study, the DO pattern was adopted as the main control parameter because its bending point could
be seen more clearly. Aeration in the reactor was essential to supply sufficient DO for biofilm in
order to treat the SCDW by simultaneous oxidization of NH4

+-N and Mn2+. After the NH4
+-N and

Mn2+ had been removed to below MCLs, the aeration supplied to the reactor was stopped,
consequently reducing energy consumption and wastage.

The treatment process was complete when the Am-Mn bending point appeared in DO (Fig. 5a).
Figure 5a shows that the DO value increased rapidly after the aeration was supplied (treatment
process started). Then it became more stable because during this period (2-4 h) the biofilm
consumed a lot of DO for simultaneous oxidization of NH4

+-N and Mn2+ and later created an Am-Mn
bending point after 4 h. The bending point was detected by the neural network program and a
signal was sent to the air valve to stop supplying aeration to the BAF. Immediately after that, the
DO value dropped rapidly as there was no aeration supplied to the BAF. The software detected the
Am-Mn bending point by analyzing the DO aeration slope as shown in Fig. 6. It started analyzing
the DO aeration slope immediately after the 4 h mark. In the first 4 h, the treatment was still in
process and the concentrations of NH4

+-N and Mn2+ were detected below the MCL. The slope
increased after the first 4 h and the software only detected when it decreased (after 5 h). The
software sent a signal to the air valve to stop aeration as the treatment process was completed.
Figure 6 also shows a graph of the air valve opening. The air valve supplied aeration (On: 1) for
about 5.5 h. Nearer to 6 h, the air valve started to bounce as it received a signal from the software
that the process of simultaneous NH4

+-N and Mn2+ removal was almost completed. The air valve
stopped the aeration (Off: 0) after 6 h.

By controlling DO using the neural network, it can accurately recognize the actual completion
time of simultaneous NH4

+-N and Mn2+ removal through the bending point as detected on the DO
profile. According to Yu et al. (2014), the removal efficiencies of Cr(VI) was well correlated with pH,

Fig. 6: Slope of DO and indication of on/off air valve
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ORP and DO values using back propagation neural network model. Moreover, by using neural
network to control synthetic wastewater treatment through ORP monitoring, Yu et al. (2010) found
that the neural network can predict precisely the colour and Chemical Oxygen Demand (COD)
removal efficiencies.

In this study, without the recognition points detected by neural network, the aeration will not
be stopped. Once the bending point was detected, the neural network program sent a signal to
software to stop the aeration supplement. Through this technique, the power consumption for
aeration supply can be automatically stopped and consequently reduced the cost compared to the
conventional on/off aeration control. In conventional control of DO on/off more costly and time
consuming are required in  measuring  the  actual  completion  time  of  NH4

+-N and  Mn2+.
Surmacz-Gorska et al. (1996) stated in their study that by using online monitoring in removing
ammonia using activated sludge treatment, the aeration energy cost can be saved and more
constant effluent quality can be achieved.

Verification through offline monitoring: In order to treat the contaminated drinking water
from NH4

+-N and Mn2+, the effluent concentrations of NH4
+-N and Mn2+ had to stay within the

regulated limits which were below 1.5 and 0.1 mg LG1, respectively. The Am-Mn bending point in
the DO pattern implied that the amount of NH4

+-N and Mn2+ in the contaminated drinking water
had decreased to minimum and was almost eliminated. This was confirmed by offline monitoring
of NH4

+-N and Mn2+ concentrations. As shown in Fig. 7, the NH4
+-N and Mn2+ values decreased as

longer the retention time. The effluent quality reached the MCL after 4 h with lower concentrations
of 0.41 mg LG1 for NH4

+-N and 0.01 mg LG1 for Mn2+ and afterward simultaneous removal occurred
for 7.5 h at a very slow removal rate. Thus, the Am-Mn bending points in the DO pattern (Fig. 5a)
proved that the simultaneous removal of NH4

+-N and Mn2+ had been fully achieved. By using two
stage Sequencing Batch Reactor (SBR) to treat animal wastewater, Ra et al. (1998) found that the
DO levels immediately increased once ammonia-N completely removed, which also lowered the
Oxygen Uptake Rate (OUR) by the bacteria.

Furthermore, comparison between offline and real-time measurement for NH4
+-N and NO3G-N

showed similar patterns but a huge difference in measurement values. The NH4
+-N concentrations

showed a decreasing trend, whereas the pattern  of  NO3G-N  production increased. As  shown  in
Fig. 5d, the reading of NH4

+-N during the 1st h of reaction increased but its trend decreased until 

Fig. 7: Offline monitoring of simultaneous NH4
+-N and Mn2+ removal
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7.5 h had elapsed, as also represented by offline measurement (Fig. 7). This  was  because  the
NH4

+-N probe used for the real-time reading required a period of adaptation for stabilization. As
the Am-Mn bending point was achieved after 4 h, NO3G-N trends for both measurement methods
(real-time and offline) slightly declined because of the DO pattern that started to shift up to a new
plateau. The trend of NO3G-N decreased until the end of the treatment cycles when the aeration
valve was automatically shut off by the neural network. Thus, even though real-time monitoring
of NH4

+-N and NO3G-N gave inaccurate readings, it could be useful as an alternative because its
pattern along the treatment cycles was similar to that of offline monitoring.

CONCLUSION
From the results obtained it is clear that NH4

+-N and Mn2+ contents in contaminated drinking
water can be simultaneously removed by means of a BAF system. The Am-Mn bending point in the
DO profile showed that the contaminated drinking water had been successfully treated to below
MCLs. The neural network successfully predicted the values of DO, ORP, pH, NH4

+-N and NO3G-N.
The results also indicated that the drinking water treatment process can be controlled by use of a
neural network. The program analysed the Am-Mn bending point of the DO pattern by using the
DO slope as a reference point. The aeration in the BAF stopped after the Am-Mn bending point
detected the complete and simultaneous removal of NH4

+-N and Mn2+. Thus, it could save on the
energy and operating costs of the BAF system.
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