Thyroid Hormones in Rats with Hyperluteinized Ovaries

M. Demajo, P. Plamenac, A. Karakasevic, V. Pantic and O. Ivanisevic-Milovanovic

The findings of research work showed that animals with hyperluteinized ovaries (HL) obtained after mechanical lesions in the posterior hypothalamus, the circulatory patterns of pituitary and ovarian steroid hormones were disturbed. In these animals the pre-ovulatory surge of luteinizing hormone (LH) was lower and prolectin (PRL) was higher, while in early proestrus estriadiol was higher, and progesterone in late proestrus was lower when compared to the intact controls. It is recognized that there is a close relationship between ovarian function and thyroid hormones, measured the serum content of total tri-iodothyronine (T3) and thyroxine (T4) in animals with hyperluteinized ovaries obtained after mechanical lesions in the posterior hypothalamus. There were no significant differences in the circulatory concentrations of these hormones between rats with HL and intact controls. Histological analysis also showed that there were no significant differences in structure of thyroids between the two groups of animals, although the weights of the thyroid glands in the lesioned animals were significantly heavier than in intact controls. These results showed that lesions in the posterior hypothalamus, which result in a disturbance of the hypothalmo-pituitary-ovarian axis inducing HL, did not bring about changes in the hypothalmo-pituitary-thyroid axis.

Key words: Thyroid hormones, hyperluteinized ovaries, rats
Demajo et al.: Thyroid and hyperluteinized ovaries.

Introduction
The relationship between thyroid glands and ovaries has been of fundamental interest for a long time, both in vitro and in vivo studies. The thyrotropic activity of a number of glyco-protein hormones, due to the structural similarity among them, has been widely studied in several in vivo and in vitro systems (Carayon et al., 1980; Pekonen and Weintraub, 1980; Nisula and Ketelslegers, 1974). The results of Carayon et al. (1980) indicate that the chorionic gonadotropin molecule has a thyrotropic action on the human thyroid. Leathem (1958) showed that thyroidectomy of the rat blocks the ripening of ovarian follicles and that these thyroidectomized, thiouracil-treated animals required much larger amounts of gonadotropic hormones to induce the process of luteinization than required in normal animals. A series of data concerning various animal species as well as humans show that treatment with thyroid suppressive pharmacological preparations results in ovarian atrophy, blocking the ripening of follicles (Folley, 1938; Krohn, 1951; Williams et al., 1944). Ovulatory dysfunction with formation of cyst in primary hyperthyroidism may be due to the number of mechanisms including altered metabolism of estrogens and hypothalamic pituitary dysfunction. Fito et al. (1984) and Fito and Szleyniger (1984) showed in vivo that the thyroid-gonadal interaction is based on the formation of gonadotropin receptors in ovarian tissue. In hyperthyroid animals, the amount of these receptors was reduced. Most authors agreed that the anterior part of the thyroid gland is the most significant role in the regulation of TSH in thyroid system. Lesions of these areas depress TSH secretion and release (Palkovits, 1982). We have shown that the mechanical lesions in the posterior hypothalamus induced the appearance of hyperluteinized ovaries and changes in the secretion pattern of glyco-protein hormones from the anterior pituitary. In these animals, preovulatory surge of LH was lower and PRL was higher when compared to the intact controls. (Ivanisevic-Milovanovic et al., 1999). This research work was therefore, conducted to investigate if the disturbed secretion pattern of the above mentioned hormones of hyperluteinized rats have an effect on the functioning of the thyroid gland in these animals.

Materials and Methods
Female rats of a Wistar strain were used and the hyperluteinization of ovaries was achieved as described by (Martinovitch et al., 1988). Briefly, animals not older than 12 hours after birth, were subjected to mechanical lesions in the region of the posterior hypothalamus with a fine steel knife. The lesions were aimed into the posterior mamillary body covering the antero-posterior planes between A915 - A11, according to the DeGroot rat brain stereotaxic atlas (1959). The pups were then returned to their mothers after the operation and kept under standard conditions in the animal room (temperature 22°C and lights on from 7:00 to 19:00 hours). The young animals were weaned at the age of 1 month. At the age of 4 months, the animals were laparatomized to confirmed the presence of hyperluteinized ovaries (HL) and sacrificed in estrus at the age of 7 months by decapitation, when the ovaries show an extreme number of corpora lutea (HL have over 40 corpus lutea per ovary). In contrast to intact controls where in our strain the average number of corpus lutea is 7, but never more than 18 per ovary). Intact female rats of the same age and the estrus phase served as controls. Blood was taken for hormone assays and thyroids for histological analysis.

Hormone assays and histological analysis: After obtaining the blood, serum samples were prepared by centrifuging the blood at 3000 rpm for 15 min. The serum was stored at -20°C until assayed for total T3 and T4 hormones using radioimmunoassay kits supplied by the manufacturer, Laboratory for Isotopes of the Institute for Nuclear Sciences "Virca". All samples were assayed in duplicate in a single lot for each hormone, according to instructions supplied with the kits. The intra-assay variation was less than 10%. Both assay systems employ hormones labeled with 125I. The antibodies were obtained from rabbit serum and bound and unbound fractions after an incubation period of 18 hours were separated with polyethylene glycol. The lowest detectable limit for T3 and T4 was 0.3 and 20 nmol·l−1 respectively. This method of hormone assay was similar to that described in Pierschala et al., 1963. After the animals were sacrificed and bled, the thyroid glands, ovaries and uteri were removed and cleaned of surrounding tissues and their weights measured. The thyroid glands were fixed in 10% neutral formalin solution and embedded in paraffin. The 5μm thick sections were stained with the hematoxylin and eosin method and viewed under a light microscope (Gosney, 1989). The values are expressed as the mean ± S.E.M. For statistical analysis the Student “t” test was used and the statistical significance was set at p < 0.05 (Alder and Roessler, 1962).

Results
Body weights at the time of sacrifice between the animals with hyperluteinized ovaries (244.8 ± 10.4 g) and intact controls (249.2 ± 4.6 g) do not differ significantly. On the other hand, as expected from the accumulation of an extreme number of corpora lutea, the HL (162.7 ± 19.6 mg) were significantly heavier (p < 0.01) than ovaries of control rats (65.8 ± 3.3 mg). However, the uteri of rats with HL (320.3 ± 36.2 mg) have significantly lower weights (p < 0.05) as compared to uteri of intact controls (396.1 ± 24.7 mg). The thyroid glands were significantly heavier (p < 0.05) in animals with HL (16.5 ± 0.9 mg) than in intact controls (14.7 ± 0.4 mg) (Table 1).

In Table 2 the ratios of ovarian and thyroid weights against body weight in rats with HL as compared to the controls was increased 160 and 14% respectively. A reduction of 18% in the ratio of uterine weights against body weight was determined in rats with HL when compared to the intact controls. Analyzing the serum content of T3 and T4, it is evident that there was no significant difference in the circulatory concentration of these hormones between rats with HL and corresponding intact controls (T3: 0.81 ± 0.05, T4: 37.20 ± 3.32 nmol·l−1 respectively) Fig. 1 and 2. Histological analysis of thyroid glands also showed that there was no significant difference in structure of these glands between the rats with HL and intact controls. In both groups of animals the characteristic arrangement of various-sized spherical follicles containing eosinophilic colloid identifying the thyroid gland were observed. In all the animals, the follicles were lined with simple cuboidal epithelium.

Discussion
Previously described that mechanical lesions placed in the posterior hypothalamus, more precisely, in the region of the posterior mamillary body of newborn rats induce the appearance of HL which are responsible for numerous physiological changes in the endocrine system between the hypothalamus and pituitary gland, leading to a reduced secretion of the adrenocorticotropic hormone (ACTH) into the circulation (Ivanisevic-Milovanovic et al., 1992 a) and elevated pre-ovulatory concentrations of prolactin (PRL), a reduction of pre-ovulatory release of the luteinizing hormone (LH), but with no effect on circulatory concentrations of the follicular stimulating hormone (FSH) (Ivanisevic-Milovanovic

*Asian Network for Scientific Information 114 | ISSN 1608-8689 | Vol. 1 No. 3, 113-116 |
Table 1: The Mean Values of Body Weights (g) and Weights of Endocrine Organs (g) in Intact Controls and Hyperluteinized (HL) Animals (Scarified at 7 Months of Age)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>HL</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weights</td>
<td>249.2 ± 4.6</td>
<td>244.8 ± 10.4</td>
<td>> 0.06</td>
</tr>
<tr>
<td>(210 - 346)*</td>
<td>(162 - 380)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovaries</td>
<td>59.9 ± 3.3</td>
<td>152.7 ± 19.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>(30.0 - 105.5)</td>
<td>(55.9 - 437.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>396.1 ± 24.7</td>
<td>320.3 ± 36.2</td>
<td>< 0.06</td>
</tr>
<tr>
<td>(250.0 - 588.0)</td>
<td>(167.2 - 679.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroids</td>
<td>14.7 ± 0.4</td>
<td>16.5 ± 0.9</td>
<td>< 0.06</td>
</tr>
<tr>
<td>(9.3 - 19.5)</td>
<td>(10.0 - 25.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38)</td>
<td>(19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Range ** Number of animals P Level of significance

Table 2: Ovarian, Uterine and Thyroid Weights Relative to Body Weight

<table>
<thead>
<tr>
<th>Ovarian/Body Weight</th>
<th>Uterine/Body Weight</th>
<th>Thyroid/Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact controls</td>
<td>0.024</td>
<td>0.159</td>
</tr>
<tr>
<td>Hyperluteinized rats</td>
<td>0.062</td>
<td>0.131</td>
</tr>
<tr>
<td>Changes*</td>
<td>-18</td>
<td>-1.4</td>
</tr>
</tbody>
</table>

*Values are in %; * Increase (+) of ovarian and thyroid weights and decrease (-) of uterine weight in %

Fig. 1: Serum concentrations of triiodothyronine (T3) in animals with hyperluteinized ovaries (HL) and intact controls (Contr.). Columns represent the Mean ± S.E.M. () N of animals.

Fig. 2: Serum concentrations of thyroxine (T4) in animals with hyperluteinized ovaries (HL) and intact controls (Contr.). Columns represent the Mean ± S.E.M. () N of animals.

and Musicki, 1992. Ivanisevic-Milovanovic et al., 1999.) Analyzing the serum content of T4 and T3, it is evident that there was no significant difference in the circulatory concentration of these hormones between rats with HL and intact controls. It should be noted that the thyroid hormone concentrations in our experimental and control animals were measured in the estrus phase of the estrous cycle, because it has been previously shown that there are different rates of thyroid activity during the estrous cycle, the thyroid of female rats being most active during heat i.e. estrus (Nalbandov, 1975.). From Fig. 2, there is no significant difference in serum concentration of T4 between the experimental and control animals, it is however, of interest that the ratio in levels of T3 against T4 differ in these two groups of animals. In the animals with HL the level of T3 is 60.6 times less than that of T4, while in the control animals there is 45 times less T3 in relation to T4. This discrepancy in the ratio of T4 and T3 in the animals with HL may be either due to a reduced production of T3 in the thyroid gland, the reduced conversion of T4 into T3, or increased clearance of T3 in the circulation. These data confirmed the fact that ratio of T4 and T3 change under various physiological conditions (Villee, 1975.), which is the case with our animals with hyperluteinized ovaries where
Demajo et al.: Thyroid and hyperluteinizized ovaries.

the circulatory levels of Pri are very high (Ivanisvic-Milovanovic et al., 1988). Although the weights of thyroid glands from animal with HL are increased as compared to the intact controls, histological analysis of thyroid showed that there was no significant difference in structure of these glands between the rats with HL and intact controls. In both groups of animals the characteristic arrangement of various-sized spherical follicles containing eosinophilic colloid identifying the thyroid gland function were observed. In all the animals, the follicles were lined with simple cuboidal epithelium. It has been suggested that optimal amounts of thyroid hormones are necessary for the stimulatory effect of PSH in initiating the ripening and rupture of follicles in the ovaries as well as the proliferation and differentiation of granulosa cells and the induction of receptors for LH and activation of steroid enzymes (Maruo et al., 1987). This thyroid-gonadotrophic interaction is based on the effect of thyroid hormones on receptor formation in the follicle walls. Mechanisms by which thyroid hormones are regulate ovarian activity have not been yet elucidated in full, but it has been confirmed that in the sow (Maruo et al., 1987), the rat (Fiteko et al., 1984) as well as in human females (Greenspan, 1980), thyroid hypofunction is responsible for the hypersensitivity of the ovaries, while thyroid hyperfunction is responsible for a reduced sensitivity of ovaries to gonadotropins (Warner and Meyer, 1949). According to these data, two important conditions have been fulfilled for the formation of corpora lutea in rats with hyperluteinizized ovaries and they are an uncharged circularity concentration of PSH (Ivanisvic-Milovanovic and Musicki, 1982) and optimal functioning of the thyroid gland. This is also confirmed by our histological findings of the hyperluteinizized ovaries, which contain large, ruptured follicles as well as fully developed corpora lutea. These findings of thyroid hormones in rats with hyperluteinizized animals confirmed the importance of an optimal status of these hormones for the development of corpora lutea. The results of this investigation, which showed that lesions in the posterior hypotalamus do not change the physiology of the hypotalamus-thyroid axis as well as previously published papers (Martinovitch et al., 1988; Ivanisvic-Milovanovic and Musicki, 1992; Ivanisvic-Milovanovic et al., 1992), indicated that the difference in the regulation of thyroid function and the ovary or adrenal glands lie in the posterior hypothalamus which participates in the regulation of ovarian and adrenal function but not involved in the regulation of thyroid activity. So, the posterior hypotalamus specifically the mamillary body does not participate in the regulation of the thyroid gland function through the thyroid releasing hormone (TRH) which as, is known is distributed in the median hypotalamus (Palkovits, 1982) i.e. the anterior part of the tuber cinereum and anterior part of the median eminance (Soulairak et al., 1954) as well as in the ventromedial nucleus (Brooks et al., 1974) and in the paraventricular nucleus where TRH mRNA is detected (Cizza et al., 1986).

Acknowledgments

The author thank the colleagues of the Radiotope Laboratory of the "Vinca" Institute for their kind gifts of RI Kits. This research was supported by the Serbian Ministry of Science and Technology, Grant No. 03E24.

References

*Asian Network for Scientific Information