Antineoplastic Activity of Cyanohydroxamic Acid (Sodium Salt) Against Ehrlich Ascites Carcinoma in Mice

J. A. Khanam, S. Roy and A. Y. K. M. Masud Rana

Antitumor activity of sodium salt of cyanohydroxamic acid (CNHA) has been evaluated against Ehrlich ascites carcinoma (EAC) in mice. CNHA inhibited the growth of EAC cells and enhanced the longevity of tumor bearing mice significantly. Hematological parameters and alkaline phosphatase (ALP) activity in tumor bearing mice are found to be significantly altered but CNHA treatment recovered those parameters towards normal values. High mortality rate of brine shrimp nourlil was obtained with CNHA exhibiting pronounced cytotoxic effect.

Key words: CNHA, Antitumor activity, hematology, brine shrimp nourlil
Kharam et al.: Antineoplastic activity of cyanohydroxamic acid (Sodium salt)

Introduction
Hydrazinecarboxylic acid (HNC) containing the functional group (CONHOH) of cyanohydroxamic acid, is a well known antitumor drug (Donehower, 1990; Gora and Robak, 1995; Coutinho et al., 1996; Nand et al., 1996). It inhibits the DNA synthesis by impairing the activity of enzyme ribonucleotide reductase (Nand et al., 1996; Sanisroossa et al., 1996). Though it is clinically used as an antitumor agent, it perturbs the hematological parameters and depresses the bone marrow (Bruce and Kennedy, 1970). Subsequently antitumor properties of some aliphatic and aromatic cyanohydroxamic acids such as aceto (AlA), benzo (BHA), salicyl (SHA) and chloroceto (CHA) cyanohydroxamic acid have been investigated (Moore, 1969; Elford, 1973; Sur et al., 1997). AHA, BHA and SHA inhibited the DNA synthesis by impairing the activity of ribonucleotide reductase also (Elford et al., 1979) and CHA inhibited the growth of EAC cells by inhibiting the DNA and protein synthesis (Sur et al., 1997). No such research work has yet been done with cyanohydroxamic acid (CNHA).

This paper reports the antitumor activity and host toxic effect of CNHA. In addition cytotoxic effect of CNHA have been recorded.

Materials and Methods
Synthesis of sodium salt of cyanohydroxamic acid (CNHA): The (CNCN=CNHOH) compound CNHA was synthesized by interaction of ethyl ester of cyanacetate with free hydroxyamine according to the procedure described by Jones and Wemer (1911). The compound was isolated as sodium salt. It was purified by repeated wash with alcohol (CH3OH) and confirmed by functional group test and I.R. spectra. The reagents and chemicals were purchased from Sigma Chemicals Co. (USA) and also from BDH Ltd. (Duglenham, UK).

Animals: Adult Swiss male mice (20-25 gm) were obtained from International Center for Diarrhoea Disease Research, Bangladesh (ICDDR’B). Animals were fed with standard mouse pellet collected from ICDDR’B and water was given ad libitum.

Tumor cells: Ehrlich ascites carcinoma (EAC) cells were obtained from Indian Institute for Chemical Biology, Calcutta-700032, West Bengal, India and were maintained by weekly intraperitoneal (i.p.) inoculation of 10³ cells/mouse in the laboratory.

LD₅₀ determination: To get the LD₅₀ dose of CNHA, similar experiment was performed with mice as reported by Littefield and Wilcoxon (1949). The drug solution in water was administered in different doses (i.p.) in male Swiss mice. LD₅₀ was evaluated by recording mortality up to 24 hours.

Cell growth inhibition: In vivo tumor cell growth inhibition (Sur and Ganguly, 1994) were carried out with CNHA and HU. Animals (6 in each group) were inoculated with 2 x 10⁶ cells mouse⁻¹. Treatment with CNHA at dose 100, 60, 25mgkg⁻¹ and HU (100mgkg⁻¹) started after 24 hrs of inoculation. The control group was treated with vehicle (normal saline). All the treatments were continued for 4 consecutive days. Animals were sacrificed on day 5 after transplantation and tumor cells were collected by repeated intraperitoneal wash with 0.9% saline. Tumor cell counts were made with a hemocytometer. Total number of viable cells per animal of the treated group was compared with those of control group.

Survival time: Survival time of EAC bearing mice treated with CNHA and HU were carried out under similar experimental conditions as stated in previous experiment for 10 days using the dose for CNHA 100, 50 and 25 and for HU 100mgkg⁻¹, respectively. Mean survival time (MST) for each group containing 6 mice was noted. Survival time of treated groups were compared with those of control group with the following calculation (Sur et al., 1994).

\[\text{% increase in life span over control} = \left(\frac{\text{MST of treated group} - \text{MST of control group}}{\text{MST of control group}} \right) \times 100 \]

where, MST = \[\sum \text{Survival time (days) of each mouse in a group} \]

Total no. of mice

Life span with respect to control (T/C %) = (MST of treated group/MST of control group) x 100

Hematological studies: In order to detect the influence of CNHA (100mg kg⁻¹) on hematological status of normal and EAC bearing mice, comparison were made among four groups (n = 4) of mice on the 12th day, after tumor transplantation (Kharam et al., 1997). The four groups comprised (1) normal mice served as control, (2) mice treated with CNHA mg kg⁻¹, (3) EAC bearing mice and (4) EAC bearing mice treated with CNHA (100mg kg⁻¹). Treatment was continued for 10 consecutive days. Blood was collected from individual mouse for experiment. Total counts of white blood cells (WBCs), and red blood cells (RBCs) as well as the hemoglobin (Hb) content were determined by standard methods (Ruisa and Svarrop, 1988) using cell diluting fluids and a hemocytometer. The differential count was carried out with Wright stain.

Alkaline phosphatase activity (ALP): ALP activity in the serum of EAC bearing mice of all such groups treated with CNHA and untreated EAC bearing mice (n=4) were assayed with the following treatments: (a) normal untreated mice, (b) tumor bearing mice and (c) tumor bearing mice treated with CNHA (100mg kg⁻¹, 10 days). Blood was collected from individual mouse in a group and assayed for ALP activity by the standard method reported by Michell (1970) on 12th day after tumor inoculation.

Brine shrimp lethality Bioassay: Twelve vials were taken (two vials for each concentration). Brine water was given to each of the vials: 5, 10, 20, 40 and 80cm m⁻³, respectively, solutions of CNHA were transferred to 10 vials and 2 vials were used as control. With the help of Pasteur pipette 10 living shrimps were inoculated into each of the vials. After 24 hrs., vials were observed and number of survival noupili in each vials were counted (Attar and Thomsen, 1999; Meye, 1982).

Statistical analysis: Significance of the experiments were statistically evaluated (Ghosh, 1984) by students 't' test and significance was assigned when p < 0.05.

Result
LD₅₀ value of CNHA was found to be 776mg kg⁻¹. Effect of CNHA on growth of EAC cells on day 5 after tumor transplantation has shown in Table 1. Treatment with CNHA (100mg kg⁻¹) resulted in a significant tumor growth inhibition (P<0.001, as evident from 72.44% reduction of tumor cells, which was found to be 82% for HU (100mg kg⁻¹) treatment. Significant cell growth inhibition was also observed with CNHA at dose 50 and 25 mgkg⁻¹ which were 65.90 and 60.88%, respectively. As shown in Table 2 the mean survival time (MST) for the
Table 1: Effect of CNHA (Cyanohydroxamic acid) on EAC (Ehrlich ascites carcinoma) cell growth (in vivo)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Dose (mg kg⁻¹)</th>
<th>No. of tumor cell 10⁷/mouse on day 5 after tumor inoculation</th>
<th>% of cell growth inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>9.38±0.64</td>
<td>-</td>
</tr>
<tr>
<td>(0.9% Saline)</td>
<td>100</td>
<td>2.55±0.34**</td>
<td>72.44</td>
</tr>
<tr>
<td>CNHA</td>
<td>50</td>
<td>3.2±0.34**</td>
<td>67.92</td>
</tr>
<tr>
<td>CNHA</td>
<td>25</td>
<td>3.6±0.37**</td>
<td>60.70</td>
</tr>
<tr>
<td>HU</td>
<td>100</td>
<td>1.38±0.27**</td>
<td>82.72</td>
</tr>
</tbody>
</table>

Results shown are mean ±SEM. No. of mice each group is 6. **P<0.001.

Table 2: Survival of EAC bearing mice following CNHA treatment

<table>
<thead>
<tr>
<th>Treatment (n=6)</th>
<th>Dose (mg kg⁻¹day⁻¹)</th>
<th>MST (days)</th>
<th>T/C %</th>
<th>Increase in life span over control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (saline)</td>
<td>-</td>
<td>34±1.7</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>CNHA</td>
<td>100</td>
<td>61±1.5**</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>CNHA</td>
<td>50</td>
<td>48±1.5**</td>
<td>144</td>
<td>44</td>
</tr>
<tr>
<td>CNHA</td>
<td>25</td>
<td>49±1.5**</td>
<td>117</td>
<td>17</td>
</tr>
<tr>
<td>HU</td>
<td>100</td>
<td>59±1.5**</td>
<td>101</td>
<td>61</td>
</tr>
</tbody>
</table>

**P<0.001, *P<0.05.

Table 3: Effect of CNHA (100 mg kg⁻¹, 10 days) treatment on hematological parameters in normal and tumor bearing mice

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Hb (g/m d⁻¹)</th>
<th>RBC 10⁶/ml⁻¹</th>
<th>WBC 10⁶/ml⁻¹</th>
<th>Lymphocytes (%)</th>
<th>Neutrophils (%)</th>
<th>Monocytes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mice (0.9% saline)</td>
<td>12.0±0.87</td>
<td>7.88±0.47</td>
<td>6±0.38</td>
<td>66±2.40</td>
<td>26±2.27</td>
<td>4±0.38</td>
</tr>
<tr>
<td>EAC bearing mice</td>
<td>7.12±0.46*</td>
<td>3.62±0.31**</td>
<td>28±0.46**</td>
<td>36±1.79**</td>
<td>64±2.28**</td>
<td>13±0.38**</td>
</tr>
<tr>
<td>EAC bearing mice + CNHA (100mg kg⁻¹)</td>
<td>10.1±0.45*</td>
<td>5.67±0.33**</td>
<td>10±0.37**</td>
<td>58±1.82</td>
<td>39±2.7</td>
<td>9±0.25</td>
</tr>
<tr>
<td>Normal mice + CNHA (100mg kg⁻¹)</td>
<td>11.62±0.12</td>
<td>6.1±0.29</td>
<td>9.24±0.40</td>
<td>50±2.2**</td>
<td>23±0.20</td>
<td>3.35±0.35</td>
</tr>
</tbody>
</table>

Hematological parameters were studied on day 12 after tumor transplantation. Results were mean ±SEM n=4. **P<0.001, *P<0.05-0.01.

Fig 1: Effect of CNHA on brine shrimp mortality

On Concentration of CNHA, CNHA = Cyanohydroxamic acid

control group was found to be 34 days, while it was 51 days for the group treated with CNHA (100mg kg⁻¹, 10days). T/C% was 151. At doses 50mg kg⁻¹, 10days and 25mg kg⁻¹, 10 days, the CNHA showed the MST 48 and 40 days and T/C% 144 and 117, respectively. HU at dose 100 mg kg⁻¹, treatment resulted MST 55 and T/C% 111.

Hematological parameters (Table 3) of tumor bearing mice on day 12 were found to be significantly (P<0.001, 0.05) altered from normal group. The total WBC count was found to be increased with a reduction of hemoglobin. The total number of RBC was also found to be decreased and the differential count of WBC, the % increase of neutrophils increased while the differential count decreased. At the same time interval CNHA (100mg kg⁻¹, 10 days) treatment could restore hemoglobin and RBC values to the normal like HU (100mgkg⁻¹, 10 days).

Discussion

From the results it has been found that CNHA inhibits the growth of EAC cells in vivo and consequently increases the life span of tumor bearing mice. It is known that HU and other hydroxamic acids in general act as ribonucleotide reductase inhibitors (Eilford et al., 1970). Young et al., 1997 have shown that replacement of the NH₂ group by methyl group (-OH) in HU leads to the decrease in the antitumor activity. In this experiment replacement with cyano group (CN) retains the antitumor activity like HU. Antitumor activity of CNHA may be due to the...
Khanam et al.: Antineoplastic activity of cyanohydroxamic acid (Sodium salt)

presence of cytotoxic effect of it. Cytotoxic effect has been confirmed from low value of LC50 (Fig. 1).

Perturbation of hematological parameters in tumor bearing mice are partly responsible for the toxic effects produced in them. In addition myelosuppression in cancer chemotherapy is a common phenomenon which is responsible for poor prognosis (Donehower, 1990). CNHA inhibits tumor cell growth, enhances the survival of treated mice and restores the hematological parameters. The depletion of ALP activity in tumor bearing mice is also found to be restored by CNHA treatment. The observations described above showed the efficiency of CNHA, with the dose mentioned above, having no adverse side effect on the host. Based on these observations, it can be concluded that CNHA possesses some antitumor properties and further researches can be carried out in an advanced level, in the field of cancer treatment.

References

MS received 2nd October, 2001; Accepted 15th October, 2001