Journal of Medical Sciences

ISSN 1682-4474
Anticarcinogenic Properties and Antioxidant Activity of Henna (Lawsonia inermis)

Susni Endrini, ¹Asmah Rahmat, ²Fatimah Ismail and ³Taufiq-Yap Yun Hin

The research was conducted to examines the anticarcinogenic properties of henna (Lawsonia inermis) extract (using chloroform as a solvent) by the microculture tetrazolium salt (MTT) assay on the human breast (dependent-hormone, MCF-7; non-dependent hormone, MDA-MB-231), colon (Caco-2), liver (HepG2) carcinoma cell lines and normal human liver cell lines (Chang Liver). The preliminary results showed that the henna extract displayed the cytotoxic effects against HepG2 and MCF-7 with IC₅₀ value of 0.3 and 24.85 μg ml⁻¹, respectively. However, no IC₅₀ values were obtained from Caco-2 and MDA-MB-231 cell lines at the concentration studied. This extract also did not show the IC₅₀ value against normal human liver cell lines, Chang Liver, indicated the selectivity of its cytotoxic properties. The antioxidative activities of this extract which could contribute to its cytotoxic properties were also studied. Antioxidant activity in henna was found to be the highest as compared to vitamin E or α-tocopherol. The strong cytotoxic properties of this extract could be due to its high antioxidant activities.

Key words: Henna, MTT assay, ferric thiocyanate, thiobarbituric acid, antioxidant

¹Department of Nutrition and Health Sciences, ²Department of Biomedicine and Health Sciences, Faculty of Medicine and Health Sciences, ³Department of Chemistry, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400-Serdang, Selangor, Malaysia
Endrini et al.: Anticarcinogenic and antioxidant activity of henna (Lawsonia inermis)

Introduction
Henna (Lawsonia inermis Linn) is a plant which grow wild in
abandoned areas (Muhammad and Mustafa, 1984) and commonly
known as "Inai" in Sumatra or "Pachar kuku" in Java. This plant is
a worldwide known cosmetic agent used to stain hair, skin and
nails (Hanna et al., 1998). However, it is not only relevant to
cosmetics. Alcoholic extracts of henna leaves showed mild anti-
bacterial activity against Micrococcus pyogenes var Aureus and
Escherichia coli (Kirtikar and Basu, 1981). Henna was also reported
to have tuberculostatic activity (Sharma, 1980). The leaves are
used as a prophylactic against skin diseases. They are used
externally in the form of paste or decoction against boils, burns,
bruises and skin inflammations. A decoction is used as gargle
against sore throat (Rout et al., 2001). The roots of this plant are
useful in burning sensation, leprosy, strangury and premature
greying of hair (Vaidyaratnam, 1995).

The major phytochemical constituent of henna, lawsonite,
was found to possess significant anti inflammatory, analgesic and
antiinflammatory activities (Ali et al., 1986). Recently, this compound has
been reported to have the inhibitory effect on the growth of human
colon carcinoma, HCT-116 cells (Kamei et al., 1998). However, there
is no study reported on the inhibitory effect of this plant against
other carcinoma cell lines.

Therefore, this study was carried out to examine the
anticarcinogenic properties of this plant towards several cancer cell
lines including MCF-7 (human breast dependent-hormone breast
breast carcinoma), MDA-MB-231 (human non-dependent hormone breast
breast carcinoma), HepG2 (human liver carcinoma), Caco-2 (human liver
carcinoma) and Chang Liver (human normal liver) cell lines using the
MTT-based cytotoxicity assay. The antioxidative activities of this
plant that may contribute to its anti-inflammatory properties were also
studied.

Materials and Methods
The research work was done at Department of Nutrition and
Health Sciences, Faculty of Medicine and Health Sciences, Universiti
Putra Malaysia, Malaysia, from June 2000 to June 2001.

Cytotoxicity study
Plant material and extraction: The leaves of L. inermis were
collected at Faculty of Medicine and Health Sciences, UPM,
Serdang, Selangor. The dried leaves (100 g) of L. inermis were soaked in chloroform
(CHCl3) at room temperature for a week. The extract was then
filtered and evaporated at 40 °C under reduced pressure and
subsequently air dried. Half of the dried residue was resuspended
in absolute ethanol (C2H5OH) for cytotoxicity assay, whereas
unsuspended dried residue was subjected to antioxidant activity
study by following the method of Ali et al. (1986) with slightly
modification.

Culturing of cells: HepG2, Caco-2, MDA-MB-231, MCF-7 and
Chang Liver cell lines were obtained from American Type Culture
Collection (ATCC, USA). The medium for HepG2 and Chang Liver were
Minimum Essential Medium with Earle’s salt (Gibco, USA).
While growth of Caco-2, MDA-MB-231 and MCF-7 were using
Dulbecco’s Modified Eagle medium (Gibco, USA). The cells were
cultured in their own medium supplemented with 10% of fetal calf
serum, 100 IU ml⁻¹ penicillin and 100 μg ml⁻¹ of streptomycin
(Gibco, USA) using 25 cm² flasks (Nunc, Denmark), in a CO₂
incubator (Sanyo, Japan) at 37 °C.

MTT assay (Roche diagnostic, USA): The viability of cells was
determined with trypan blue. Exponentially growing cells were
harvested, counted by using hemocytometer, and diluted with
medium, yielding a concentration of 1x10⁵ cells ml⁻¹. From this cell suspension, 100 μl were pipetted into 96-well microtiter plates
(Nunc, Denmark) and this well were incubated for 24 hours in 5 %
CO₂ incubator (Sanyo, Japan) at 37 °C. The diluted range of
extract was added to each well with the final concentration of the
tests extracts being 0.03, 0.1, 0.3, 1, 3, 10 and 30 μg ml⁻¹. After
adding the extract samples, new medium were added to make up
the final volume of 200 μl each well. The plate was incubated in
5 % CO₂ incubator (Sanyo, Japan) at 37 °C for 96 hours. Then,
20 μl of MTT reagent (Roche, USA) was added into each well. This
plate was incubated again for 4 hours in CO₂ incubator (Sanyo,
Japan) at 37 °C. After incubation, 200 μl solubilization solution
(Roche, USA) was added into each well. The cell was then left
overnight at 37 °C, 5 % CO₂ incubator. Finally, the absorbance
was read with the ELISA reader (LX-900).

OD sample (mean)
% Cytotoxicity = x 100%
OD control (mean)

OD = Optical density

Antioxidant activity
Ferric thiocyanate (FTC) method: The method of ferric thiocyanate
was followed from Kikuzaki and Nakatani (1993), which was
slightly modified from Mitsuwa et al. (1967) and Otsava and Nanuki
(1981). FTC method was used to determine the amount of
peroxide at the initial stage of lipid peroxidation. The peroxide
reacts with ferric chloride (FeCl₃) to form a reddish ferric chloride
(FeCl₃) pigment. In this method, the concentration of
peroxide decreases as the antioxidant activity increases. A mixture of
4 mg of sample was placed in 4 ml of absolute ethanol (Merck),
4.1 ml of 2.52 % linoleic acid (Sigma) in absolute ethanol, 8 ml of
0.06 M phosphate buffer (pH 7.0) and 3.9 ml of water was placed
in a vial (t = 36 min, h = 75 mm) with a screw cap and then
placed in an oven at 40 °C in the dark. To 0.1 ml of this solution,
9.7 ml of 75 % ethanol and 0.1 ml 30 % ammonium thiocyanate
(Sigma) was added. Exactly 3 min after the addition of 0.1 ml of
0.02 M ferrous chloride in 3.5 % hydrochloric acid (HCl) to the
reaction mixture, the absorbance was measured at 500 nm every
24 hours until the absorbance of the control reached maximum.
The control and standard were subjected to the same procedures
as the sample, except that for the control, only the solvent was
added, and for the standard, 4 mg sample was replaced with 4 mg
of vitamin E.

Thiobarbituric acid (TBA) method: The method of Ottolenghi
(1969) was used to determine the TBA values of the samples. The
formation of malonaldehyde is the basis for the well-known TBA
method used for evaluating the extent of lipid peroxidation. At
low pH and high temperature (100 °C), malonaldehyde binds TBA
to form a red complex that can be measured at 532 nm. The
increase amount of the red pigment formed correlates with the
oxidative rancidity of the lipid. Two 2 ml of 20 % trichloroacetic
acid (CC1₃COOH) and 2 ml TBA aqueous solution were added
to 1 ml of sample solution prepared as in the FTC procedure, and
incubated in a similar manner. The mixture was then placed in a
boiling water bath for 10 min. After cooling, it was centrifuged at
2300 rpm for 20 min and the absorbance of the supernatant was
measured at 532 nm. Antioxidant activity was determined based
on the absorbance on the final day.

Statistical analysis: All determinations were carried out in six replicates
and the independent sample t-test was analyzed by using
Statistical Package for Social Sciences Software (SPSS).

Results
Cytotoxicity: The chloroform extract of henna displayed the
strongest cytotoxic effect on human liver carcinoma cell line
(HepG2) followed by human dependent-hormone breast carcinoma
cell line (MCF-7) with IC₅₀ values of 0.3 and 24.8 μg ml⁻¹.
Endrini et al.: Anticarcinogenic and antioxidant activity of henna (Lawsonia inermis)

Fig. 1: The cytotoxic effect of chloroform extract of henna on human liver carcinoma cell line (HepG2), human dependent-hormone breast carcinoma cell lines (MCF-7), and human colon carcinoma cell lines (Caco-2).

Fig. 2: The total antioxidant activity of chloroform extract of henna by using FTC and TBA method. Values are means ± SEM (vertical lines). Bars with different letters are significantly different at p<0.05.

FTC: Ferric thiocyanate, TBA: Thiobarbituric acid

Fig. 3: Absorbance value of samples at 0.02 % concentration using FTC method

respectively. However, no IC_{50} values were obtained from Caco-2 and MDA-MB-231 at the concentration tested (Fig. 1).

Antioxidant Activity: The total antioxidant activity of chloroform extract of henna by using FTC and TBA methods showed that there is a significant (p<0.05) difference between the total antioxidant activity of henna compared with α-tocopherol (Vit. E) (Fig. 2). The chloroform extract of henna had the highest activity (87.6%), followed by α-tocopherol (82.6%) by using FTC method. Based on the TBA method, henna also had the significantly higher antioxidant activity (55.7%) compared to α-tocopherol (44.4%). The comparison of both methods showed that henna had the significantly (p<0.05) higher total antioxidant activity in both methods.

The individual activity of samples by the FTC method showed that henna had the least increase in absorbance values, followed by α-tocopherol from day 1 to day 6, but the levels increased on day 8, reached maximum levels on day 9 and finally dropped on day 10 due to the malonaldehyde content (Fig. 3). The low absorbance value indicated the high level of total antioxidant activity.

Discussion

The use of chemotherapeutic drugs in cancer therapy involves the risk of life threatening host toxicity. Henna (Lawsonia inermis Linn) has medicinal properties and this study revealed its potential cytotoxic and antioxidant activities. In this experiment, the extract was prepared by using chloroform. Although not all possible cytotoxic compounds are extracted by this method, thus it is expected to extract most of the cytotoxic compounds from the plants (Smit et al., 1995). The anticarcinogenic properties of this extract was determined by using MTT-based cytotoxicity assay and the selectivity effect of this extract towards normal liver cell line, Chang Liver, was also determined by using MTT assay. This assay is based on the reduction of a soluble tetrazolium salt, by mitochondrial dehydrogenase activity of viable tumor cells, into an insoluble colored formazan product, which can be measured spectrophotometrically after dissolution. Under the experimental conditions of this study, the enzyme activity and the number of formazan formed were proportional to the number of cells. Reduction in the number of cells by a particular agent (cytotoxicity) can generally be explained by cell killing and/or inhibition of cell proliferation. The IC_{50} value (the drug concentration causing 50% inhibition of the tumor cells) was used as a parameter for cytotoxicity (Smit et al., 1995).

According to Wall et al. (1987) any plant extracts which have the IC_{50} value below 20 μg ml^{-1} can be accepted as a potent cytotoxic extract. The IC_{50} value of henna extract toward human liver cancer cell line, HepG2, which was much lower than 20 μg ml^{-1} (0.3 μg ml^{-1}) indicated a potential anticarcinogenic properties of this plant (Fig. 1). These results showed similarities between in vitro and in vivo experiments in terms of anticarcinogenic effects. In the previous animal study, henna supplementation showed the reduction of the severity of hepatocarcinogenesis (Rodríguez et al., 1992). It has shown good correlation between the cytotoxic effect of this plant and its antioxidant activity. Antioxidants are known to alleviate oxidative stress which is generally perceived as one of the major causes for the accumulation of mutations in the genome. Antioxidants are believed to provide protection against cancer (Ames, 1983). Peroxide is gradually decomposed to lower molecular compounds during the oxidation process and these compounds is measured by FTC and TBA methods (Fig. 2). The amount of peroxide at the primary stage of linoelic acid peroxidation were measured by FTC method, whereas TBA method measures at the secondary stage (Kikuzaki and Nakatani, 1993). From the FTC result, henna showed the least increase in absorbance values, followed by α-tocopherol from day 1 to 5 day, but the levels increased on day 6, reached...
maximum levels on day 9 and finally dropped on day 10 (Fig. 3). This reduction is due to the accumulation of malonaldehyde compounds from linoleic acid oxidation, which is not stable. Further oxidation causes malonaldehyde to be converted to secondary products such as alcohols and acids that cannot be detected (Spanier et al., 1992).

As a conclusion, antioxidant activity in henna chloroform extract was found to be highest, followed by vitamin E or α-tocopherol. The strong cytotoxic properties of this extract could be due to its high antioxidant activities. A more detailed investigation focusing on the active compounds is of interest for their molecular nature as well as their mechanisms of action.

Acknowledgment
This project was funded by IRPA grant No. 06-02-04-0060

References

MS received 1st June, 2002; accepted 20th June, 2002