Assessment of the Recurrence Rate of Laryngeal Cancer in Tracheostoma in Patient Undergoing Laryngectomy

Mohammad Sadeghi Hassanabadi, Shabnam Shadabi, Seyed Mousa Sadr-Hosseini, Masoud Motesadi Zarandi and Payam Eghtesadi-Argahi

The purpose of this study is to evaluate the recurrence rate of laryngeal cancer in tracheostoma and its influential factors in patient undergoing laryngectomy. The data of 112 patients undergoing laryngectomy in Imam-Khomeini and Amir-Alam Hospitals from 2002 to 2004 were evaluated in a cohort study. The data of the age, gender, subglottic invasion, pre-operative radiation, thyroid condition during operation, staging of the tumor, pre-operative tracheostomy and primary site of the tumor of the patients were recorded. The patients were examined for stoma recurrence at 3, 6 and 12 months after operation. Suspected cases underwent more advanced diagnostic methods such as CT-scan, MRI, bronchoscopy, esophagoscopy and finally biopsy to verify presence or absence of stoma recurrence. The data of 83 patients were finally analyzed. There were 9 cases (10.84%) of recurrence in patients with tracheostoma. The number of pre-operative tracheostomy, prevalence of higher stages (T4) of cancer, thyroid resection, subglottic invasion and pre-operative radiation, were significantly higher in patients with recurrence of tracheostoma. The primary site of the tumor and the mean age of the patients did not affect the rate of recurrence. The death rate was also significantly higher in these groups. Pre-operative tracheostomy and radiation, higher stages of cancer (T4), subglottic invasion and thyroid resection as a sign of spread of tumor, are assumed as risk factors for osteomal recurrence while the primary site of the tumor was not influential.

Key words: Tracheostoma, risk factor, recurrence, laryngectomy

ENT Research Center, Tehran University of Medical Sciences, Tehran, Iran
President of Parsheb Fajouheshy Medical Sciences Research Institute, Tehran 1476783476, Iran
INTRODUCTION

Laryngeal carcinoma has good prognosis in cases of prompt diagnosis and proper treatment. One of the most common complications in patients with advanced laryngeal carcinoma is stoma recurrence (Omakaya et al., 2004). Stomal recurrence is a common controversial issue on head and neck oncology (Fertito et al., 2002). Stomal recurrence is a dramatic, late complication with poor prognosis. Despite the remarkable advances in laryngeal surgery and introduction of modern plastic techniques, stomal recurrence is still accounted as an important cause of death in patients with laryngeal cancer (Martin Villares et al., 2000). The common sites of recurrence include tracheostoma region, neopharynx, neck and distant metastases (Fertito et al., 2002). Identification and follow-up of risk factors in high-risk groups and detection of stomal recurrence at early stages plays the main role in the treatment (Imauchi et al., 2002). Regarding this issue, there have been numerous studies in different countries like Spain (Esteban et al., 1993; Leon et al., 1996; Martin Villares et al., 2000), Japan (Imauchi et al., 2002), Hong Kong (Yuen et al., 1996). To our knowledge, there have not been any studies in this field in Iranian patient, so we decided to evaluate the patients undergoing surgery in Imam Khomeini and Amir-Alam Hospitals for stomal recurrence and its risk factors at specific times. The purpose of this study was to assess the rate of tracheostoma recurrence in patients who had undergone laryngectomy in addition to its risk factors in a specific population. Identification of these risk factors and prompt diagnosis and follow-up of stomal recurrences at early stages (Type I, II) facilitates application of more conservative surgical methods with/without chemoradiotherapy.

MATERIALS AND METHODS

After approval of research deputy and ethics committee of Tehran University of Medical Sciences, the patients undergoing laryngectomy in Imam Khomeini and Amir-Alam Hospitals from 2002 to 2004 were enrolled in a cohort study. The data of the age, gender, subglottic invasion, pre-operative radiation, thyroid condition during operation, staging of the tumor, pre-operative tracheostomy and primary site of the tumor of the patients were recorded. The patients were examined for stomal recurrence at 3, 6 and 12 months after operation. Suspected cases underwent more advanced diagnostic methods such as CT-scan, MRI, bronchoscopy, esophagscopy and finally biopsy to verify presence or absence of stomal recurrence.

Analysis of quantitative data was done applying independent t-test and qualitative data were analyzed utilizing chi-square and exact Fisher test in SPSS ver. 12.0. p-value below 0.05 was assumed significant.

RESULTS AND DISCUSSION

The data of 112 patients were recorded, but due to different reasons including change of address or phone number, etc., we could follow only 83 patients and the results of these 83 patients were analyzed. The mean of follow-up period was 15.6±4.8 months (min = 6 and max = 24). The mean age of the patients was 62.5±9.8 years (min = 42 and max = 84). All patients were male. Other demographic variables and the characteristics of the tumor and recurrence are summarized in Table 1 and 2.

There were 9 cases (10.84%) of tracheostomal recurrence. There was no significant difference in mean age of the patients with and without tracheostoma recurrence. The prevalence of pre-operative tracheostomy, higher stages of cancer (T4), thyroid resection, subglottic invasion and pre-operative radiation was significantly higher in patients with tracheostoma recurrence. The primary site of the tumor did not affect the rate of recurrence. Finally, 17 patients (20.48%) died, while the mortality rate was significantly higher in patients with tracheostoma recurrence (Table 3).

Table 1: The absolute and relative frequencies of the patients based on the characteristics of the patients, tumor and recurrence

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Absolute frequency</th>
<th>Relative frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>83</td>
<td>100.00</td>
</tr>
<tr>
<td>Subglottic invasion</td>
<td>12</td>
<td>14.46</td>
</tr>
<tr>
<td>Pre-operative radiation</td>
<td>5</td>
<td>6.02</td>
</tr>
<tr>
<td>Thyroid lobectomy</td>
<td>39</td>
<td>46.99</td>
</tr>
<tr>
<td>Pre-operative tracheostomy</td>
<td>11</td>
<td>13.25</td>
</tr>
<tr>
<td>Stomal recurrence</td>
<td>9</td>
<td>10.84</td>
</tr>
<tr>
<td>Mortality</td>
<td>17</td>
<td>20.48</td>
</tr>
</tbody>
</table>

Table 2: The absolute and relative frequencies of the patients based on the characteristics of the tumor

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Absolute frequency</th>
<th>Relative frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor staging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>T3</td>
<td>73</td>
<td>87.95</td>
</tr>
<tr>
<td>T4</td>
<td>10</td>
<td>12.05</td>
</tr>
<tr>
<td>Primary site of the tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glottic</td>
<td>50</td>
<td>60.24</td>
</tr>
<tr>
<td>Supraglottic</td>
<td>18</td>
<td>21.69</td>
</tr>
<tr>
<td>Subglottic</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Undetermined</td>
<td>15</td>
<td>18.07</td>
</tr>
</tbody>
</table>
DISCUSSION

There have been a variety of reports of sternal recurrence after laryngectomy. Ferlito et al. (2002) evaluated the sternal recurrence after laryngectomy in a review article of the articles published up to 2002 and reported its prevalence to be from 1.7 to 25%, 94% of which was in the first 2 years and 80% of which occurred between 6 and 12 months after operation. Resendiz-Colosia et al. (2003) mentioned the sternal recurrence between 1.7 and 40% with the mean of 7.5% in different studies.

Although our search found most of the results after these studies in the same range, there were also some studies reporting higher rates. Onikoya et al. (2004) stated that sternal recurrence rate to be 38.9%. Our results showed a recurrence rate of 10.84% (9 in 83 patients).

We evaluated 8 risk factors that might be influential in sternal recurrence. All patients in our study were male, thus, we could not assess the effect of gender in sternal recurrence. We also found no significant difference in the mean age of the patients with and without tracheostoma recurrence.

Other studies have accounted pre-operative tracheostomy as a common risk factor of parasternal recurrence; however, there is still controversy over this. (Ferlito et al., 2002) Some studies have showed that parasternal recurrence is significantly higher in patients who had undergone tracheostomy (emergency or elective) prior to surgery (Zbaren et al., 1996). Sato et al. (1989) showed the same relationship for emergency tracheostomy and Brennan et al. (1988) verified that. Yuen et al. (1996) indicated that airway obstruction and emergency tracheostomy have significant relationship with sternal recurrence. Santoro et al. (2003) reported the same results. Our study revealed that prevalence of pre-operative tracheostomy was significantly higher in patients with sternal recurrence (8.89 vs. 4.05% with odds ratio = 189 and 95% confidence interval of 18 to 2042). However, Reddy et al. (2001) showed that emergency tracheostomy does not affect sternal recurrence in T1 glottic cancer. Yotakis et al. (1996) indicated that there was no significant relationship between pre-operative or intra-operative tracheostomy and sternal recurrence. Mantravadi et al. (1981) verified these results. The main reason of this controversy seems to be the effects of the site of the emergency tracheostomy. Imachi et al. (2002) indicated that the primary site of pre-operative tracheostomy can be a risk factor for sternal recurrence.

Based on these studies, application of laryngectomy in prevention of sternal recurrence in patients undergoing tracheostomy is controversial (Ferlito et al., 2002). Some researchers have mentioned pre-operative tracheostomy as an indication for emergency laryngectomy in order to prevent sternal recurrence (Griebie et al., 1987; Keim et al., 1965; McCombe et al., 1991) while Rockley et al. (1991) found no clues showing a decrease in sternal recurrence by emergency laryngectomy.

The patients with higher stages of cancer experience higher rates of sternal recurrence. Our results revealed that the prevalence of higher stages of cancer (T4) was significantly higher in patients with sternal recurrence (66.67 vs. 5.41% with odds ratio = 35 and 95% confidence interval of 6 to 194) which was verified by Yotakis et al. (1996) and Zbaren et al. (1996). Screening of patients with higher stages of cancer may decline the sternal recurrence rate.

Another important factor is the size of the primary involvement and the amount of involved tissue resection. Regardless of the cause of sternal recurrence, wide infiltration of the tumor into soft tissue of the neck and mediastinum affects this issue and makes the control of the tumor very difficult (Resendiz-Colosia et al., 2003). We used 2 variables to assess the size of involvement: thyroid invasion and paratracheal lymph node involvement. Thyroid invasion can be an important influential factor in parasternal recurrence (Ferlito et al., 2002). Residual cancer in thyroid can absolutely be an important factor affecting the sternal recurrence. We found out that thyroid resection was significantly higher in patients with sternal recurrence (100 vs. 40.54% with in calculable odds ratio). This implies that sternal recurrence can be due to high stage of the disease and its wide distribution in these patients.
Paralaryngeal, paratracheal and pre-tracheal lymph node involvement is also an influential factor in sternal recurrence in laryngeal carcinomas that are biologically invasive (Ferlito et al., 2002). Paratracheal lymph node involvement is especially effective in sternal recurrence (Mantravadi et al., 1981). Inamuchi et al. (2002) showed that paratracheal lymph node involvement is significantly higher in patients with sternal recurrence. Resendiz-Colosia et al., (2003) Liu et al. (2002 and 2001) and Petrovic et al. (2004) found the same results. In spite of the importance of this variable, it was not possible to be reported because of the shortages in reporting system and the pathology reports of the hospitals of our study.

Furthermore, we did not found a significant difference in sternal recurrence in patients with primary glottic or subglottic involvement. We did not have any cases with subglottic invasion. The primary subglottic cancers, originating in subglottic area, are rare and are associated with a long asymptomatic period. More commonly the subglottic area is invaded by the tumors originating from glottic or supraglottic and spread by paraglottic space invasion. Subglottic invasion of this type is associated with high rate of sternal recurrence due to paratracheal lymph node involvement (Chiesa et al., 2001).

Subglottic involvement or remaining non-resected malignant tissues in cancers of the glottic area are statistically the most important risk factor of sternal recurrence (Mantravadi et al., 1981). Reddy et al. (2001) indicated that subglottic invasion of the primary glottic tumor is associated with a remarkable increase in sternal recurrence. They showed that all patients with subglottic invasion experienced sternal recurrence, while sternal recurrence happened in only 6% of patients without subglottic invasion. Our study revealed the same results (100% vs. 4.05% with uncalculated odds ratio). Many other studies showed the same relationship (Barr et al., 1990; Leon et al., 1996; Liu et al., 2002, 2001; Resendiz-Colosia et al., 2003; Rubin et al., 1990; Yotakis et al., 1996; Yuen et al., 1996; Zbaren et al., 1996).

Pre-operative radiation has also been accounted as a risk factor of sternal recurrence. There have been studies revealing that the rate of sternal recurrence was higher in patients undergoing high-dose radiation and then laryngectomy. Our study verified this relationship (33.33 vs. 4.05% with odds ratio = 11.83 and 95% confidence interval of 2 to 72). This can be due to the facts that: 1) pre-operative radiation is performed in patients not willing to undergo surgery at early stages and after progression of the cancer, they had to undergo surgery and 2) low-dose pre-operative radiation may stop the patient from undergoing proper dose of radiation after the operation (Breneman et al., 1988).

Our study showed a significantly higher mortality rate in patients with recurrence of tracheostoma (77.78 vs. 13.51% with odds ratio = 22.4 and 95% confidence interval of 4.1 to 123). This is verified by the results of Cnakoya et al. (2004) who reported a mortality rate of 70% in patients with sternal recurrence versus 30% in others. Sternal recurrence following laryngectomy is assumed incurable (Petrovic and Djordjevic, 2004) and the survival is very low despite the development of surgery, chemotherapy and radiation treatment for this disease. The treatment choices are very limited and confined to radical surgery (Ferlito et al., 2002).

Finally, as laryngectomy is a frequent operation in ENT wards, identification of the risk factors of sternal recurrence and close monitoring of these patients can yield a more promising outcome.

Based on our results, pre-operative tracheostomy, higher stages of cancer (T4), thyroid resection as a sign of spread of cancer, subglottic invasion and pre-operative radiation were risk factors of sternal recurrence, while the primary site of the tumor did not have a significant relationship with it. The mortality rate was significantly higher in patients with sternal recurrence which can be an emphasis on closer follow-up of these patients. It is recommended to evaluate paratracheal lymph node involvement, post-cricond invasion and evolution of a second cancer in addition to other variables and also the alterations of the rate of sternal recurrence and the mortality and survival rates of patients with laryngeal cancer over the time.

REFERENCES


