Total Antioxidant Status is Related to the CD4+ Cell Count and the Clinical State of HIV/AIDS Patients in the Northeast, Nigeria

In this case control study, we compared the Total Antioxidant Status (TAS) of two groups of HIV positive persons that consisted of 262 AIDS patients and 158 asymptomatic HIV-antibody positive subjects with a control group of 204 HIV-antibody negative subjects. The mean CD4+ cell counts per cubic millimeter were 187 for the AIDS patients, 495 for the asymptomatic HIV patients and 920 for the control group. TAS levels in mmol L⁻¹ were 0.34±0.08 for AIDS patients, 0.77±0.29 for asymptomatic patients and 1.4±0.13 for controls. The CD4+ counts and TAS showed no gender biases but they differed significantly between the groups; p<0.05. The TAS was progressively depleted in HIV infected persons as the disease progressed from asymptomatic state to AIDS.

Key words: Total antioxidant status, HIV, AIDS, CD4+ cells, Maiduguri

1Department of Medical Laboratory Sciences, University of Maiduguri, Nigeria
2Department of Medicine, University of Maiduguri, Nigeria
3Department of Medical Laboratory Sciences, Ambrose Alli University, Ekpoma, Nigeria
4Department of Veterinary Physiology and Pharmacology, University of Maiduguri, Nigeria
5Nigerian Institute of Medical Research, Maiduguri Out-Station, Maiduguri, Nigeria
6Department of Community Medicine, University of Maiduguri, Nigeria
INTRODUCTION

The sub-Saharan African countries have continued to bear the brunt of the Human Immunodeficiency Virus infection and the Acquired Immunodeficiency Syndrome (HIV/AIDS) pandemic. Those countries accounted for over 75% of the approximately 3 million AIDS deaths in 2003 worldwide (UNAIDS, 2004). The importance of micronutrient deficiency in determining the outcome of HIV infection is increasingly being recognized in the era of widespread antiretroviral drugs treatment (Gil et al., 2005). When the balance between free radicals and antioxidant supply is tipped, the resulting oxidative stress can cause many disease conditions and in the persons infected with the Human Immunodeficiency Virus (HIV) infection, it is reported that there is increased viral replication and a variety of biochemical and physiologic changes, which often result in metabolic impairment and cell death (Kalra et al., 1994). Antioxidants are compounds with chemical affinity for free radicals. They exist in abundance and bond with free radicals before free radicals can cause damage (Mates et al., 2000). Compounds with antioxidant effects and replenishing mechanisms are in five classes, namely; enzymes peptides, phenolic compounds, nitrogen compounds and carotenoids. The potential impact of Reactive Oxygen Species (ROS) on plasma Total Antioxidant Status (TAS) in HIV infection is substantial according to previous reports (Varga and Matkovics, 1998; Lantos et al., 1997). Consequently, excessive ROS production if not countered by antioxidant molecules can lead to oxidative stress which may play an important role in the progression of HIV infection (Kalra et al., 1994). We are not aware of any study in Nigeria that has characterized any of the oxidative stress indicators in HIV/AIDS patients. The aim of this study is to determine the plasma total antioxidant status in patients infected with HIV at both ends of the spectrum HIV/AIDS disease namely the asymptomatic HIV infection and the advanced disease state of AIDS.

MATERIALS AND METHODS

Setting: Maiduguri is the capital of Borno State of Nigeria. The town is located on Latitude 11°50’ and longitude 13°10'E and the state is bordered by both the Republics of Chad and Cameroon. The adjusted 2001 census showed that Maiduguri had over 590,000 residents. The population is made up of diverse congregating ethnic groups from Nigeria and other parts of sub-Saharan Africa, but the dominant groups are the Kanuri, Marghi, Bura, Shuwa and Fulani.

Subjects: Six hundred and twenty four individuals that included 204 control subjects, 158 asymptomatic HIV infected persons and 262 AIDS patients. The subjects were recruited prospectively and consecutively in a cross-sectional study conducted at the University of Maiduguri Teaching Hospital, Nigeria. The HIV-antibody negative apparently healthy controls were recruited from staff and blood donors. The HIV-antibody positive, asymptomatic non-AIDS included all who did not have symptoms or/and had generalized lymphadenopathy (Gill et al., 2003; CDC, 1986) were recruited from prospective blood donors, counselees and occasional cases of self-request. The patients with Acquired Immunodeficiency Syndrome (AIDS) attended the medical clinic at the University of Maiduguri Teaching Hospital and were referred to the Immunology and/or Haematology Departments for investigations.

Methods: After counseling and obtaining informed consent in each case, blood was taken by venepuncture and stored in plain and heparinized containers. The initial screening test to determine HIV status of the study population was determined using Genescreen Elisa (Biorad, France) which employs the principle of Enzyme Linked Immunosorbent Assay. The HIV-antibody positive individuals had a further test that confirmed their status using Immunocomb II HIV-I and 2 ConFirm Kit (Organics, Israel). This Enzyme Immunocassay test was performed using blood samples. CD+ T-lymphocyte cell count was determined using Dynabeads kits (Dynal, France) which employs the use of monoclonal antibodies coated beads. TAS levels were determined using a commercia kit (Randox, UK) based on colourimetric method (Koracevic et al., 2001).

Statistical analysis: The results were summarized as means±SD and the means compared using non-parametric test (Mann Whitney and Kurskal Wallis). The level of significance in the differences between the means was inferred at p<0.05.

RESULTS AND DISCUSSION

A total of 204 apparently healthy HIV-antibody negative controls, 158 asymptomatic non-AIDS HIV-antibody positive patients and 262 AIDS patients were studied (Table 1). The controls had a mean CD4+ cell count of 920.0±102 mm-3 and TAS level of 1.4±0.13 mmol L-1. The asymptomatic HIV-infected subjects had a mean CD4+ cell count of 495, ±94.0 mm-3 and TAS level of 0.77±0.29 mmol L-1 whereas the AIDS patients had CD4+ count of 187.0, ±51.0 mm-3 and TAS level of 0.34±0.08 mmol L-1 (Table 2, 3). The mean and standard deviations of the Total Lymphocyte Count (TLC) for the
load in HIV infection (Elbim et al., 1999). Like the present study, Gil et al. (2003) demonstrated a significantly lower TAS in HIV infected persons than a control group (CDC, 1992). In this study we showed that lower TAS was related to decreased CD4+ cell count and this too corroborated the findings of other reports (CDC, 1992). Viral Tat protein is known to increase the apoptotic index by increasing intracellular ROS. It thus appears that antioxidant molecules are depleted when they are consumed in the process of protecting cells against ROS induced oxidative damage in a magnitude that is related to advancement of the disease to AIDS. In an attempt to correlate the oxidative stress with the progression of HIV Gil et al. (2003) demonstrated that increasing the plasma levels of vitamins A, C and E was associated with significant reduction in CD38/CD8 count (Gil et al., 2005). Serum tissue fluids and host cells are reported to possess antioxidant mechanisms including ceruloplasmin, transferring, catalase, superoxide dismutase and glutathione peroxidase among others (Varga and Matkovic, 1998). However, this study suggests that the replenishing mechanisms for the total antioxidant molecules in advanced HIV infection are ineffective as the range of values for TAS in AIDS patients is very low.

One possible reason for the low level of TAS in the HIV-infection patients may be related to low intake of fruits vegetables and vitamins brought about by poverty scarcity ignorance and anorexia. A proactive approach will need to be instituted to forestall a situation of unhindered disease progression that maybe related to the increased oxidative stress. The importance of the abnormal levels of TAS in the pathophysiology of HIV infection in Nigeria has not been elaborated by any previous study. Therefore, the evidence provided by this study suggests that antioxidants may be beneficially applied to ameliorate the untoward effect of oxidative stress in HIV infection. The situation of decreasing antioxidant capacity in the plasma with the progression of HIV seen in present study seems to have a corollary in the erythrocyte cytoplasm. Repetto et al. (1996) showed significantly lower levels of red cell glutathione in patients with AIDS when compared to the HIV positive

Table 1: Age and sex characteristics of the population studied in Maiduguri, Nigeria

<table>
<thead>
<tr>
<th>Age groups (Years)</th>
<th>AIDS group</th>
<th>Asymptomatic non-AIDS group</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>10-19</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>20-29</td>
<td>14</td>
<td>58</td>
<td>52</td>
</tr>
<tr>
<td>30-39</td>
<td>64</td>
<td>58</td>
<td>44</td>
</tr>
<tr>
<td>40-49</td>
<td>34</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>50+</td>
<td>14</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>134</td>
<td>114</td>
</tr>
<tr>
<td>Grand total</td>
<td>262</td>
<td>158</td>
<td>204</td>
</tr>
<tr>
<td>Mean age</td>
<td>34</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 2: CD4+ Counts for HIV patients and controls in Maiduguri, Nigeria

<table>
<thead>
<tr>
<th>Groups</th>
<th>CD4+ count (mm-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>AIDS</td>
<td>80-217</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>399-600</td>
</tr>
<tr>
<td>Controls</td>
<td>896-1104</td>
</tr>
</tbody>
</table>

p<0.05 for all paired comparison, Kruskal Wallis, H = 313.310, df = 2, p = 0.000

Table 3: Levels of plasma total antioxidant status in AIDS patients, asymptomatic non-AIDS HIV patients and controls in Maiduguri, Nigeria

<table>
<thead>
<tr>
<th>Value (mmol L-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Asymptomatic</td>
</tr>
<tr>
<td>AIDS</td>
</tr>
</tbody>
</table>

p<0.05 for all paired comparison, Kruskal Wallis, H = 334.805, df = 2, p = 0.00 (all groups), Mann-Whitney, U = 0.000, p = 0.000 (AIDS vs Controls), Mann-Whitney, U = 2166.000, p = 0.000 (Asymptomatic vs Controls), Mann-Whitney, U = 413.500, p = 0.000 (AIDS vs Asymptomatic)

The data from this study provides evidence indicating that the progression from the asymptomatic HIV infection to the late stage of AIDS is associated with the progressive depletion of total antioxidant resources of affected individual. The depletion of the plasma total antioxidant status is more apparent in AIDS patients than in the asymptomatic persons with of HIV infection. The severe depletion of TAS in the AIDS stage of HIV infection apparently supports previous reports that indicate increased ROS production correlated with viral...
but asymptomatic individuals. We reported earlier that glutathione peroxidase levels were low in AIDS patients from the same locality as those that participated in this present study (Ezimah et al., 2005).

Persons living with HIV/AIDS (PLWHA) frequently have anorexia, nausea, vomiting and malabsorption. These conditions greatly contribute to the attendant weight loss and malnutrition. The thiol group of compounds that is situated in the albumin molecule and ascorbic acid provide the most important defence against oxidant injury (Doneke, 2000; Stenvinkel et al., 1999). We hypothesize that the progressive HIV/AIDS disease (assessed by decline in the CD4 cell count) and the consequent malnutrition, hypoalbuminaemia and low plasma total antioxidant level expose the PLWHA to enhanced oxidant injury. In addition, it is quite possible that the rapid deterioration and poor outcome of HIV infection in sub-Saharan Africa might be linked to the prevailing poverty, baseline under nutrition with both low dietary micronutrient and antioxidant intakes. The increased requirement of antioxidants by HIV infected persons only further aggravates the need for supplements.

This study supports some recent opinions that point to the benefits of increased intake of fruits providing micronutrient and antioxidants such as vitamins C (ascorbic acid) (Gil et al., 2005). It is therefore not only safe but also justifiable to recommend the increased use of antioxidant vitamins such as vitamins C and E (alpha tocopherol) along with improved nutrition in the management of HIV/AIDS patients especially those who are residing in sub-Saharan Africa.

CONCLUSION

The total antioxidant status of persons infected with the human immunodeficiency virus was lower than that of a control group of apparently normal individuals. Moreover the total antioxidant status was depleted with the progression of the HIV/AIDS disease. The simple assay of TAS may complement other laboratory parameters in the staging and the monitoring of the progression of HIV infection in sub-Saharan Africa.

ACKNOWLEDGMENTS

The contributions of Mr. Tony Akuta and Edward Oku were on the bench where they were involved in the analysis of the test samples are appreciated. Anthony Ezimah contributed in the conception of the study while Dr. Nwankwo was involved in the drafting and writing up. The rest of the team contributed in the various other aspects of the work including sample collection, data analysis and article preparation.

REFERENCES

