The Comparative Efficacy of Insecticides for the Control of the Insect Pest Complex of Cotton (Gossypium hirsutum L.).

Marghub Amer, S. Agha Shah Hussain, Liaqatullah Khan, Masood Khattak and Gh. Shabir Shah*
Faculty of Agriculture, Gomal University, D.I. Khan
*Agriculture Research Institute, Ternab, Peshawar, Pakistan

Abstract

The tested insecticides at their recommended doses significantly reduced the insect pest complex of Cotton as compared to that of control. Tamaron 600SL (Methamedephos) ranke lst by giving more than 85 percent mortality of the major insect pests (white fly, thrips, jassids, and mites). Furry 100EC (Zectacypermethrin) was the least effective pesticide with less than 70 percent killing of the test insects. Against bollworms, Pyrethroids reduced 85.95 percent of the pest infestation, while Curacron (Profenofos) 500EC, an organophosphates could only reduced 61% of boll infestation. However, compared to check all the insecticides in reducing the pest infestation were statistically significant at alpha 0.05. Pre sprays of Polytrin-C (Curacron + Cypermethrin) 440EC, at 14 days interval gave maximum yield of solution.

Introduction

Cotton (Gossypium hirsutum L.), Family: Malvaceae, is an important cash crop of Pakistan. Being a major source of foreign exchange, it also plays key role in the national economy. Besides, providing lint to domestic Textile industry, the edible oil obtained from its seed is also a good source of edible oil and contributes 69.5 percent share in national oil production. (Awan, 1994). Moreover, Cotton seed cake (Khal Binola), is also used as source of cattle concentrate feed.

The area in Pakistan under Cotton cultivation was 3148.6 thousand with the production of 9374.2 bales in 1996-97 (Abrar, 1998). Besides, other factors, the insect pest complex of cotton inflicts heavy losses to the crop by reducing yield and quality of seed Cotton. Although many control measure could be used for the control of these insect pests by giving quick knock down and required mortality results of the pest pests. Number of sprays have a positive influence on the physiological characteristics as well as the yield of seed Cotton. (Ahmad, 1993; and Iqbal, 1993).

Materials and Methods

Experiment No. 1

Comparative Efficacy of Insecticides: The experiment was conducted at the research area of the Entomology section, Agricultural Research Institute (A.R.I.), Ratta Kulachi, Dera Ismail Khan, during Kharif 1998. The experiment was designed in simple Randomized Complete Block (R.C.B.) with 3 replications, each having 11 plots (10 insecticides and 1 check). In all the plots (9x3 sq.m each), the cultural practices were maintained uniform. The insecticides were sprayed randomly with knapsack sprayer at their recommended doses when ever the pest population reached the Economic Threshold Level (E.T.L.). The efficacy of the insecticides was determined by taking pre and post test data. Three leaves (from upper, middle, and lower canopy) per plant from three randomly selected plants in each plot were examined with magnifying glass for sucking insects (Aphids, Jassids, White fly, Thrips, and Mites). Data were then converted to percent mortality/percent reduction in the population of the sucking pests as:

Pre spray data - post spray data (Current population) x 100
------------------------
Pre spray data

Similarly data on Boll infestation by bollworms were recorded from five randomly selected Cotton plants from each treatment as:

Infested Bolls
--------------- x 100
Total Bolls

Now the percent infestation reduction was calculated as:

Pre spray infest. %age - Post spray infest. %age
------------------------------------------- x 100
Pre spray Infestation % age.

The data were recorded after 24, 36, and 72 hours of the application of each insecticide. These data were then subjected to statistical analysis and means were separated by Least Significance Difference (L.S.D.) test.

Experiment No. 2

Evaluation of No. of Sprays of Polytrin-c 440 Ec Against the Insect Pest Complex of Cotton: For effective, yet judicious/economical use of insecticides against the insect pest complex of Cotton, a control trial on the number of sprays was carried out at the farm of Agriculture Research Institute (A.R.I.), Ratta Kulachi, Dera Ismail Khan, during Kharif 1998. The experiment was laid in simple R.C.B.
design. There were 6 treatments, each replicated three times. Cotton variety Gomal 93 was sown in plots (6x3 sq.m. each). All the cultural practices were given uniformly to whole field as and when needed.

The field/plots were surveyed for the attack of sucking insects and bollworms after every two days. Diagonal method for scouting the sucking pests on upper, middle, and lower leaves of Cotton plant, with the help of magnifier, was used. Flowers, squares, and bolls of ten randomly selected plants per plot were observed for bollworm infestation. In this experiment T1 was sprayed with Polytron-C 440EC, at its recommended dose of 1375 ml ha⁻¹, only once. All other treatments were also given their first spray of Polytron-C 440EC at the time T1 was sprayed. The interval for the remaining spray treatments, excepting T2, was adjusted by dividing the period from the date of first spray to the mid of October by the spray number. T2 received its second spray at the E.T.L. for Bollworms. Knapsack hand sprayer was used for spraying the treatment plots. The appraisal of the Number of Sprays made by computing their effect on the parameters like, the Number of Bolls, Bollweight, Plant height, and the Yield of seed Cotton per ha.

Results and Discussion

Experiment No. 1

Efficacy of Ten Insecticides

White fly: All the insecticides gave better control of White Fly as compared to check plots (Table-1). Maximum mortality (87.02 percent) was recorded with Tamaron 600SL, although it was at par with those of Polytron-C 440EC, Nurelle-D 505EC, Curacron 500EC, Baythroid TM 525EC, and Lorban 40EC. Tamaron 600 SL gave significantly higher mortality over Pirate AC630, and Azodrin 400WSC, with (83.33 percent), and (82.84 percent) mortality of White Fly respectively. Pirate AC630, and Azodrin 400WSC were statistically at par with Nurelle-D 505EC, Curacron 500EC, Baythroid TM 525EC, Lorban 40EC, and DPX-MPO 15SC, but better than Furry 100EC, and Check with 70.76 percent and 10.47 percent mortality of White Fly, respectively.

Jassid: It is evident from Table-1, that all the insecticides controlled Jassid very effectively, however, here too Tamaron 600 SL proved more effective with 85.85 percent mortality. It was statistically similar to Baythroid TM 525EC, Nurelle-D 505EC, Azodrin 400WSC, Larsban 40EC, DPX-MPO 15SC, Curacron 500EC, and Polytron-C 440EC. Pirate AC630 (82.57 percent) mortality was at par with all the insecticides in study except Tamaron 600SL, and Furry 100 EC. Furry 100EC, with 72.95 percent mortality, although better than Check (11.14 percent), was least effective of all the tested insecticides.

Thrips: The Table-1 illustrates that all the insecticides were equieffective in controlling Thrips but significantly better than Furry 100EC. Maximum mortality of Thrips was recorded in plots sprayed with Polytron-C 440EC (86.05 percent), while minimum in check plots (12.78 percent).

Mites: All insecticides gave better control of the Mite and were equieffective in controlling Mite except Furry 100EC (Table- 1). Tamaron 600SL, however, was at the top with (85.33 percent) mortality. Khalid (1990), Rangel (1990), Kandil et al. (1991), Nagia et al. (1992), Basharat (1993), Rizwan (1993), Afzal et al. (1995), Mehmood (1995), and Tufail (1996) obtained almost similar results in controlling the sucking pests of Cotton.

Bollworms: Our findings (Table-1) indicate that pyrethroids gave better control of Bollworms. DPX-MPO 15SC was the best insecticide with maximum infestation reduction percentage (85.95 percent) when applied at 437.5 mlha⁻¹. It was statistically similar to Polytron-C 440EC, Lorban 40EC, Baythroid TM 525EC, Nurelle-D 505EC, Azodrin 400WSC, Pirate AC630, Azodrin 400WSC, Pirate AC630, and Furry 100EC with 83.51 percent, 82.60 percent, and 71.81 percent boll infestation reduction, were statistically similar in effect. Tamaron 600SL (60.75 percent) infestation reduction and Furry 100EC were at par. Curacron 500EC with 58.21 percent boll infestation reduction was the least effective treatment, followed by the check with 12.66 percent. These findings agree with those of Bhatti et al. (1990), Khalid (1990), Mahar (1993), Talpur et al. (1993), and Anonymous (1995). Studies carried out by Basharat (1993) although does not show the similar result, however, he too acknowledges the supremacy of Baythroid TM in controlling the Bollworm.

Experiment No. 2

Evaluation for number of sprays Against The Insect Pest Complex Of Cotton.

Number of bolls: As is clear from the Table 2, the maximum number of 53 bolls per plant was recorded from the plots sprayed 6 times with Polytron-C 440EC recommended dose of 1375 mlha⁻¹, although it was statistically at par with those with 5 sprays (48.67) by Data recorded from the plots, given 4, 3, and 2 sprays. Polytron-C 440EC were statistically similar as regards boll number per plant. Minimum number of bolls per plant (30.67) were obtained from the plots sprayed with Polytron-C 440EC. This result is in accordance with those of Ahmad (1993) and Iqbal (1993), who although used Baythroid TM 525 and Tamaron 600SL, however, found positive influence of the number of bolls as well as other physiognomic characters.

Boll weight: Maximum Boll weight was obtained from plots of Cotton sprayed twice Table 2. However, it was par with plots receiving 1 and 3 sprays of Polytron-C 440EC. Minimum Boll weight was recorded in plots w...
Table 1: Comparative efficacy of insecticides against the insect pest complex of cotton. Percent population reduction of Boll Inf., Red. By Bolloworms.

<table>
<thead>
<tr>
<th>No.</th>
<th>Insecticides</th>
<th>White Fly % Mortal</th>
<th>Jassids % Mortal</th>
<th>Thrips % Mortal</th>
<th>Mites % Mortal</th>
<th>Boll worms % Inf. Re.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Azodrin 400WSC</td>
<td>82.84c</td>
<td>84.47ab</td>
<td>84.62a</td>
<td>83.47a</td>
<td>83.51ab</td>
</tr>
<tr>
<td>2</td>
<td>Nurelle-D 505EC</td>
<td>84.71abc</td>
<td>84.82ab</td>
<td>85.63a</td>
<td>84.65a</td>
<td>84.93a</td>
</tr>
<tr>
<td>3</td>
<td>Polytron C 440EC</td>
<td>86.52a</td>
<td>84.04a</td>
<td>86.05a</td>
<td>84.97a</td>
<td>85.57a</td>
</tr>
<tr>
<td>4</td>
<td>DPX-MPO 15SC</td>
<td>83.93bc</td>
<td>84.30ab</td>
<td>84.54a</td>
<td>83.60a</td>
<td>85.95a</td>
</tr>
<tr>
<td>5</td>
<td>Furry 100EC</td>
<td>70.76d</td>
<td>72.95c</td>
<td>73.33b</td>
<td>49.24b</td>
<td>71.81bc</td>
</tr>
<tr>
<td>6</td>
<td>Tamaron 600SL</td>
<td>87.02a</td>
<td>85.86a</td>
<td>85.65a</td>
<td>85.33a</td>
<td>60.75cd</td>
</tr>
<tr>
<td>7</td>
<td>Curaron 500EC</td>
<td>84.48abc</td>
<td>84.22ab</td>
<td>85.61a</td>
<td>83.28a</td>
<td>58.21d</td>
</tr>
<tr>
<td>8</td>
<td>Lorsban 40EC</td>
<td>84.04abc</td>
<td>84.41ab</td>
<td>84.10a</td>
<td>85.21a</td>
<td>85.41a</td>
</tr>
<tr>
<td>9</td>
<td>Baythroid</td>
<td>84.35abc</td>
<td>85.06ab</td>
<td>84.05a</td>
<td>84.70a</td>
<td>85.32a</td>
</tr>
<tr>
<td>10</td>
<td>Pirate AC630</td>
<td>83.33c</td>
<td>82.57b</td>
<td>84.21a</td>
<td>83.15a</td>
<td>82.60ab</td>
</tr>
<tr>
<td>11</td>
<td>Check</td>
<td>10.47e</td>
<td>11.14d</td>
<td>12.78c</td>
<td>9.98c</td>
<td>12.66e</td>
</tr>
</tbody>
</table>

Means with similar letters are not statistically different from one another at alpha = 0.05 probability.

Sprays of Polytron-C 440EC. However, it was statistically similar to the plots sprayed 4, and 5 times. There was no significant difference in the Boll weight of the plots sprayed 3 and 5 times. As the boll weight increases the boll number and the yield decreases.

Plant height: As shown in the Table 2, no significant difference was found among any of the insecticidal treatment for plant height.

This result differs totally from those of Ahmad (1993), and Iqbal (1993), probably because of the difference of site and the insecticide, since they used Baythroid TM 525EC, and Tamaron 600SL.

Yield per ha: The Table 2 illustrates that all the treatments significantly increased the yield of seed cotton (Table 2). It decreased with reduction in number of sprays and shows directly proportional trend. Maximum yield (3410 Kgs) was recorded from the plots sprayed 6 times with Polytron-C 440EC. Minimum yield was obtained from plots treated once (at E.T.L. for sucking insects for the first time) with Polytron-C 440EC. Spray number has positive effect on the boll number and yield of seed cotton but negative influence on boll weight.

References


