Effect of Different Moisture Regimes on Yield and Yield Components of Fine Rice (Oryza sativa L.)

Khalid Rafiq, M. Maqsood, H. N. Asghar, M. Arshad and M. Nawaz
Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan

Abstract
This study was undertaken to determine the effect of four moisture regimes i.e. I₁ (77.5), I₂ (100), I₃ (122.5) and I₄ (145) cm during 1992 and 1993. The study revealed that each additional level of moisture regime increased plant height, grain yield and yield components significantly. Number of panicle bearing tillers hill⁻¹, and number of spikelet panicle⁻¹ were significantly higher in I₄ (145 cm). Significantly higher grain yield were produced by I₄ (145 cm). Effect of irrigation was most pronounced on the yield components which developed fully at optimum irrigation level (I₄). Consequently, the contribution to grain yield was substantially increased.

Introduction
Rice crop in Pakistan is grown on an area of 2251 thousand hectares with annual production of 4305 thousand tones, giving an average rice yields of 1912 kg ha⁻¹ (Anonymous, 1997). This average yield is very discouraging since, there is a big gap between the actual and potential per unit area yield of the crop. Among cereals rice has the lowest productivity per unit of water. The main season for growing rice is rainy season and irrigation is provided only during deficit period to make up the water requirements. Rice crop grower in dry season or in low rainfall areas consumes large amount of water with very low water use efficiency. The amount of water added to rice crop under most irrigation systems is very high (2500 mm as against 480 mm of evapotranspiration). Experimental results have shown that low land rice gave maximum yield under submerged soil condition (Sahu and Raut, 1969).
Biswa and Bhattacharyya (1987) concluded that increase in water depth decreased in number of tillers hill⁻¹ and increased plant height. The 1000-grain weight was higher in submerged than in rainfed crops.
Dabral and Ran (1992) analyzed data from a field experiment on farmers field in rice CV-Ratna. Results indicated that maximum grain yield 5.37 t/ha was obtained with irrigation regime of 166.05 cm.
Differences are also reported to occur by supplying different amounts of water at different growth stages. Tilling, primordia initiation and flowering are most critical stages of development and any sort of stress in moisture supply at these stages reduces the grain yield appreciably. Work done in Nadia district in Aus (Autumn rice) indicated that a brief stress in the application of water affects crop and growth adversely at the flowering stages in decreasing sequences (i) flowering (ii) grain filling, (iii) tilling, (iv) pre-tilling stages. (Annual Progress report of work done in the water management scheme of the Govt. of W. Bengal, 1973-74). The objectives of the study are to see the effect of different levels of moisture regimes on yield and yield components of fine rice cultivar KSK-385 under irrigated conditions of Faisalabad. It can therefore safely be recommended that fine rice variety (KSK-385) should preferably be irrigated at 145 cm moisture regime (19 irrigations) when grown on sandy clay loam soil to realize maximum grain yield under in agro-ecological conditions obtained at Faisalabad.

Materials and Methods
Basmati-385 was sown at Postgraduate Agriculture Research Station, University of Agriculture, Faisalabad during 1992 and 1993. The nursery was sown adopting a sowing method in the 1st week of June. One month old seedlings were transplanted in the first week of July. The experiment was carried out in field and laid out in split plot design with 3 replication maintaining a net plot size of 3 x 4 m². Four irrigation levels/moisture regimes, 1 irrigation (77.5 cm), 13 irrigation (100 cm), 16 irrigations (122.5 cm) and 19 irrigation (145 cm) were maintained accordingly till maturity to meet the water requirements of the crop plants and to suppress weed growth. Supply of irrigation water was stopped one week before harvesting when signs of maturity appeared.
Before harvesting plant height of randomly selected 20 plants were recorded. The number of panicle bearing the hill⁻¹, number of spikelets panicle⁻¹ and 1000-grain yield were recorded. Grain yield and straw yield were recorded. Harvest index was computed as the ratio of grain yield to straw yield. The data collected were statistically analyzed applying Fisher’s analysis of variance technique. Treatment means were compared by Duncan’s new multiple range test at 5 per cent level of probability to determine statistical differences (Steel and Torrie, 1980).

Results and Discussion
Plant height: In case of moisture regimes, maximum plant height (136.98 cm) was recorded in I₄ (145.42 cm) which was followed by 132.59 cm, 128.03 cm and 124.07 cm in I₃, I₂, and I₁ in a descending order. The more plant height obtained in moisture regime I₄ as individual factors may be due to adequate supply of nitrogen at constant P and K soil moisture respectively in these treatments. Irrigation moisture regime I₄ (145 cm) might have played major role in increasing plant height since the moisture remains available to the plant adequately during all the vegetative plant growth stages in this treatment. These observations are also supported by the findings of Biswas & Bhattacharya (1987) who concluded that increase in
Table 1: Yield components of a cultivar rice KSK-385 as influenced by different irrigation levels (Average of two years)

<table>
<thead>
<tr>
<th>Irrigation levels</th>
<th>Plant height (cm)</th>
<th>No. of panicle bearing tillers hill</th>
<th>No. of spikelet panicle</th>
<th>100-grain weight (g)</th>
<th>Grain yield</th>
<th>Straw yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>l₁, 10(77.5cm)</td>
<td>124.07c</td>
<td>11.45c</td>
<td>144.0c</td>
<td>18.27ns</td>
<td>3.78c</td>
<td>9.47c</td>
</tr>
<tr>
<td>l₂, 13(100cm)</td>
<td>128.03f</td>
<td>12.25c</td>
<td>159.13f</td>
<td>19.46c</td>
<td>4.26c</td>
<td>11.83c</td>
</tr>
<tr>
<td>l₃, 16(122.5cm)</td>
<td>132.59c</td>
<td>12.60c</td>
<td>169.19f</td>
<td>18.61b</td>
<td>4.69c</td>
<td>14.50c</td>
</tr>
<tr>
<td>l₄, 19(145cm)</td>
<td>136.98c</td>
<td>12.97b</td>
<td>177.57f</td>
<td>18.58c</td>
<td>4.96c</td>
<td>16.63c</td>
</tr>
</tbody>
</table>

*Any two means in a column not sharing a letter differ significantly at 0.05 P

supply decreased the number of tillers hill and occurrence of sterility and increased plant height and 1000-grain weight.

No. of panicle bearing tillers hill: The panicle bearing tillers hill were significantly affected by moisture regimes during both the study years. Maximum no. of panicle bearing tillers hill (12.98 and 12.97) was recorded in l₁ (145 cm) during 1992 and 1993 respectively. It was followed by irrigation levels l₂ (12.61 and 12.59) and l₃ (12.31 and 12.19) during 1992 and 1993 respectively. The minimum number of panicle bearing tillers hill (11.44 and 11.46) was recorded in irrigation level l₁ during 1992 and 1993 respectively. The more panicle bearing tillers obtained in l₁ (145 cm) may be attributable to the adequate supply of these inputs at these levels. These results are in line with the findings of Aliaga et al. (1986) who is of the view that high water table increased plant height, fertile tillers and panicle length due to easy availability of moisture to the plants.

No. of spikelets panicle: In case of moisture regimes, maximum spikelets panicle (175.33 and 179.75) were recorded in l₁ with the minimum (142.00 and 146.00) in l₁ during 1992 and 1993 respectively. Moisture regime l₁ was followed by l₂ (166.25 and 172.00) and l₃ (157.00 and 161.25) during 1992 and 1993 respectively, which differed significantly from each other and from all other treatments. The maximum number of spikelets panicle in l₁ treatment may be due to adequate moisture supply through all the plant growth stages.

1000-grain weight: Different moisture regimes did not affect 1000-grain weight during both the trial years.

Grain yield: In moisture regimes, maximum grain yield (4.96 t ha⁻¹) was recorded in l₁ treatment. It was followed by the treatments l₂ (4.69 t ha⁻¹) and l₃ (4.26 t ha⁻¹) that also differ significantly when compared with each other. Minimum grain yield (3.78 t ha⁻¹) was recorded in l₁ treatment.

Straw yield: The increase in straw yield recorded in F₁, interaction may be due to appropriate supply of fertilizer and moisture in this interaction that encouraged vegetative growth of the plant resulting in more straw yield. These results are in line with the findings of Ogunremi et al. (1986) who reported that high irrigation level increased straw yield due to more vegetative growth. The results are also partly supported by the findings of Alexander and Latif (1988) who documented that grain and straw yields were similar statistically with a minor increase at 3 irrigation level.

Harvest index: Nitrogen x irrigation interaction was significant in two years mean. F₁,₁ interaction gave the highest harvest index (23.57%). It was followed by interactions F₁,₁ (22.80%), F₁,₂ (22.46%), F₁,₃ (22.38%) and F₁,₄ (21.86%) but interactions F₁,₁ (22.46%) and F₁,₃ (22.38%) were at par when compared with each other. The minimum harvest index value (17.03%) was recorded in F₁,₁ interaction. Rest of the interactive values however, were in between. Moisture regime l₁ had significantly lower harvest index at F₁, level, which may be due to more shoot growth. The more harvest index value (23.57%) recorded in F₁,₁ interaction may be attributable to more economic yield and lesser biomass in this interaction. The shoot/vegetative growth should be suppressed and reproductive stage prolonged to get more harvest index values.

References