Influences of Lactation and Pregnancy on Physio-Chemical Properties of Buffalo Blood: Red and White Cell Indices

A. Sarwar and M.N. Chaudhry
Department of Veterinary Anatomy, University of Agriculture, Faisalabad 38040, Pakistan

Abstract: Ten hematological parameters were studied in 160 apparently healthy productive milk Nili-Ravi buffaloes. Four groups were comprised of 40 lactating pregnant, 40 lactating not-pregnant, 40 dry pregnant and 40 dry not-pregnant buffaloes. Statistical analysis revealed that out of 10 hematological parameters studied: i) lactation altered seven parameters: raising ESR and neutrophil percentage in lactating but RBC, PCV, TLC, percentages of eosinophils and lymphocytes in dry buffaloes. ii) pregnancy affected a total of three parameters significantly: raising eosinophil percentage in pregnant but ESR and TLC in not-pregnant buffaloes. It is assumed that metabolic stress and hormonal changes may lead by and far changes in the blood composition in order to maintain the homeostasis.

Key words: Hematology, lactation, pregnancy, buffaloes

Introduction
Lactation and pregnancy lead to transient adjustments in the Melleu interieur of domestic animals (Chaudhry, 1989). Besides the diagnosis of various health and reproductive problems of dairy animals, the adequate knowledge of changes in blood composition associated with lactation and pregnancy may be helpful in the improvement of milk production (Adams et al., 1978). The buffalo is an animal of great economic importance in developing countries. A 70 % of total milk production is derived from buffalo in Pakistan (Akhtar, 1987). Yet the data on hematological and hematocellular parameters of indigenous buffalo is inadequate (Mayed et al., 1985).
Therefore, this study deals with quantitative assessment of the changes that might occur from disturbances in the equilibrium of blood due to physiological stresses, e.g., lactation and pregnancy in buffaloes.

Materials and Methods
A total of 160 apparently healthy adult female buffaloes were randomly selected at the Livestock Production Research Institute, Bahadarsagar and Punjab Military Farms, Okara. Age animals varied from 32 to 203 months with a mean of 98 ± 2 months. The samples were taken from 160 animals comprising of 40 lactating pregnant, 40 lactating not-pregnant, 40 dry pregnant and 40 dry not-pregnant buffaloes. The blood was drawn by jugular venipuncture in the morning hours. About 20 ml blood was drawn directly into two dry clean test tubes, one of these contained few oxalate crystals as an anticoagulant. Blood smears were prepared at the time of blood collection.
Blood smears were fixed with methanol and stained with Hemacolor (E. Merck, Darmstadt, F.R. Germany). Specific gravity (SG) was determined by chloroform benzol mixture method (Coethott and Tuttle, 1955). Bleeding time was recorded in seconds by Duke's method as detailed by Kolmer et al. (1959). Red blood cells (RBC) and the total leukocytic counts (TLC) were determined with the help of Coulter Counter (Model D1). Erythrocyte sedimentation rate (ESR) was determined using Westergren sedimentation tubes after Benjamin (1978) and the readings in millimeters (mm) were recorded after first hour. Micro hematocrit method as described by Jain (1988) was used for the determination of packed cell volume (PCV) per cent. Mean corpuscular volume (MCV) in fentoliters (fl) was worked out using the formula of Benjamin (1978). Differential leukocytic count (DLC) was obtained from the Hemacolor (E. Merck, Darmstadt, F.R. Germany). Stained blood smears after Benjamin (1978). Of every 100, white cells were encountered the numbers of Neutrophils (neut.), Eosinophils (Eosi.), Basophils (Baso.), Lymphocytes (Lymph.) and Monocytes (Mono.) gave their respective counts in percentages.

Statistical Analysis: The data were analyzed to study the effects of two extremes of lactation and pregnancy by the analysis of variance technique. Two-factor interactions were also worked out. The significant main effects as well as their interactions were further subjected to Student-Neuman-Keul's multiple range test. Various group means were thus compared.

Results
Effects of lactation on hematological parameters of 160 buffaloes are presented in Table 1a and b. Statistical analysis revealed that out of 10 hematological parameters studied; i) lactation altered seven parameters: raising ESR and neutrophil percentage in lactating, but RBC, PCV, TLC, percentages of eosinophils and lymphocytes in dry buffaloes. ii) pregnancy affected a total of three parameters significantly: raising eosinophil percentage in pregnant but ESR and TLC in not-pregnant buffaloes.

Discussion
The values of all parameters under study were found by and large within the physiological means. Analysis of variance revealed that only the lactation effect on red blood cell count was significant and that too at 5 percent level. Irrespective of pregnancy relatively higher red cell count was, therefore, recorded in dry than lactating buffaloes. Unlike the present study Hafez et al. (1983) found no significant difference on mean red cell count due to lactation. But they compared 30 lactating not-pregnant with 17 dry not-pregnant Egyptian buffaloes. In other words they were in fact looking at the not pregnant buffaloes when in the lactating or dry stages. This was in line with the findings of the present study that lactation had no significant effect in the buffaloes. which were not-pregnant. Lactation and pregnancy affected the first hourly ESR at 5 and 1 percent levels, respectively. Comparatively high ESR was observed in lactating than dry and not-pregnant than pregnant buffaloes. Younas (1988) also observed highly significant differences in the first hourly ESR among 4 each of his lactating pregnant, lactating not pregnant and dry pregnant buffaloes.
Lactation affected the PCV: Dry buffaloes showed higher PCV than their lactating counterparts. Mean corpuscular volume did not interact either with lactation, pregnancy or both. Lactation and pregnancy however, interacted with each other at 8 percent level.

Lactation and pregnancy were found to alter TEC: Raising the values in dry and not pregnant buffaloes. The interaction between lactation and pregnancy was also found highly significant (P<0.01). It appears, that none of the previous workers has statistically tested the effect of these two variables on TEC. However, like the present study, TEC was found to decrease with the advancement in pregnancy (Hafez et al., 1983). Yet pregnancy was found to have no bearing on TEC (Desoky and Fadaly, 1979). Many geophysical and genetic factors obviously have a combined effect on TEC. Sample size, nutritional status and the physiological state of the buffaloes being studied are not quite comparable. Higher PCV and TEC in dry buffaloes than their lactating counter parts might be probably due to haemodilution in lactating buffaloes.

Comparatively higher neutrophil count was recorded in lactating than dry buffaloes. Pregnancy was, however, found inert. Lactating buffaloes when not-pregnant gave comparatively higher neutrophil percentage than when pregnant. Hafez et al. (1983) did not observe any significant effect of lactation on neutrophil count. Late pregnancy leukocytosis, reaching its peak at the time of parturition, was considered by Desoky and Fadaly (1979) to be primarily due to rise in the neutrophil count. Like present study they observed no significant difference in count of their dry and lactating non-pregnant group.

Mean eosinophils and lymphocytes counts were found significantly higher in dry than lactating buffaloes. No study was available to compare these results.

References


