Performance Assessment of Tomato Advanced Lines to Late Blight and Early Blight under Natural Epiphytopsics

Nazrul Islam, Bimal Kumar Pramanik, Md. Atiqur Rahman Khokon and M. Ashrafuzzaman

Seed Pathology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

Abstract: Fifteen advanced lines of tomato including two check cvs. 'Manik' and 'BARI-10' were assessed under natural epiphytopsics for their performance to late blight (Phytophthora infestans) and early blight (Alternaria solani). The highest late blight disease incidence was found in V-52 & V-215 and the lowest in V-378. Two lines were found resistant (V-426 & V-269), two moderately resistant (V-138 & V-385), two were tolerant (V-282 & V-422), four moderately susceptible (V-378, V-138, V-288 and BARI 10), three were susceptible (V-330, V-201 and Manik) and two highly susceptible (V-52 & V-215), but none was found highly resistant. In case of early blight V-259 showed the highest and V-216 showed the lowest disease incidence. On the basis of early blight disease intensity, one was found resistant (V-52), three were moderately resistant (V-138, V-201 and V-215), six were moderately susceptible (V-378, V-282, V-330, V-426, V-422 and Manik), four were susceptible (V-187, V-385, V-258 and BARI 10), one was highly susceptible (V-269) and none was found highly resistant.

Key words: Performance, late blight, early blight, tomato lines

Introduction
Tomato (Lycopersicon esculentum Mill.) is one of the most nutritious vegetables. The average yield of this crop in Bangladesh is 2.75 ton/ha (BBS, 2000) which is very low as compared to other leading tomato producing countries (FAO, 1989). This crop suffers from as many as 200 diseases in the world, of which 30 are routinely important (Watterson, 1986). Out of these diseases, late disease caused by Phytophthora infestans is quite important in Bangladesh (Talukdar, 1974) as 80-90% of its production may be damaged by this disease if control measures are not taken in time (Zahid et al., 1993). Another most important disease is early blight, caused by Alternaria solani. Most of the cultivated varieties are susceptible to this disease and it can cause loss to the extent of 78% in fruit yield (Singh, 1986). Under severe epiphytopsics loss of fruits may be as high as 95% (Sridhar and Naik, 1983). For healthy tomato cultivation use of resistant cultivars is gaining popularity because it is cheap, safe and easy way to manage diseases. It is imperative to screen tomato cultivars against the above mentioned major diseases and thus research to locate resistant/tolerant genotypes. On the above mentioned perspective the study was undertaken to assess performance of 15 tomato lines against late blight (Phytophthora infestans) and early blight (Alternaria solani) under natural epiphytopsics.

Materials and Methods
Fifteen tomato advance lines including 2 checks (Manik and BARI 10) were evaluated under natural field conditions at the field laboratory of the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh during October 1999 to March 2000. The experimental field was well prepared into good tilth by ploughing and cross ploughing followed by laddering. The recommend doses of urea, TSP & MP were applied during final land preparation 4 days before the transplanting of the seedlings (BARC, 1997). The experiment was laid out in RCB design with three replications. Each experimental field was divided into 15 small plots. Thus there were 45 unit plots for the study. The size of the unit plot was 8.4 sq.m. Seedlings were in 15 different seed beds. Twenty five days old healthy seedlings were transplanted in the experimental field. Twenty eight seedlings were transplanted per unit plot. The incidence of late blight and early blight was calculated by the formula:

% incidence = \(\frac{\text{No. of infected seedlings/plant}}{\text{Total no. of seedling/plant}} \times 100 \)

The severity of the late blight infestation was recorded using a standard scale (Anonymous, 1986). To record early blight infestation was recorded using the scale described by Vakilounaklis (1963). For diagnosis infected and healthy leaf samples were surface sterilized by dipping in 0.1% HgCl2 for 30 seconds and rinsed in sterile water before placing in acidified potato dextrose agar medium in petridish with sterile forceps. The plated tissue were incubated at 20 ± 2°C for 7 days or more to allow associated organisms to grow. Phytophthora infestans was identified under a compound microscope following the keys out - lined by Alexopolous (1961) and Ingram and Williams (1971). Alternaria solani was identified following the key out lined by Ellis & Gibbon (1975). Data on the % plants infected, % leaves infected and % area infected due to the two diseases were recorded and were subjected to statistical analysis (ANOVA) following RCBD to determine the level of significance (Gomez and Gomez, 1983).

Results and Discussion
The highest disease incidence, 97.62% was observed in the lines V-52 and V-215 in present experiment (Table 1). It was not unprecedent as Anonymous (1997) reported that 100% late blight disease incidence may occur in different tomato varieties/genotypes. In check cultivar Manik, the disease incidence was 75.38%, which is in conformity with the report by Anonymous (1995) that per cent disease incidence in cultivar Manik could vary from place to place and also reported that disease incidence was 52.1% at Iahurdi and 100% at BINA farm, at Mymensingh in 1994-95. The average per cent infected leaves per plant was found between 16.93 to 72.64 at 80 days after transplanting (Table 1). This resembled the findings of Anonymous (1996). Cultivar Manik, in this study showed 59.20% leaves infected. The disease severity due to late blight in terms of per cent leaf area infected (LAI) varied between 4.83 to 86.61 (Table 1).
Table 1: Reaction of 15 tomato cultivars/lines against late blight under field conditions

<table>
<thead>
<tr>
<th>Varieties</th>
<th>% plant</th>
<th>% infected leaves</th>
<th>% leaf area infected (incidence)</th>
<th>Plant (LAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-187</td>
<td>34.52</td>
<td>45.36</td>
<td>22.86 h</td>
<td></td>
</tr>
<tr>
<td>V-378</td>
<td>16.67 f</td>
<td>35.36</td>
<td>26.50 d</td>
<td></td>
</tr>
<tr>
<td>V-262</td>
<td>46.43 f</td>
<td>26.67</td>
<td>26.50 f</td>
<td></td>
</tr>
<tr>
<td>V-138</td>
<td>70.24 f</td>
<td>67.14</td>
<td>65.74 d</td>
<td></td>
</tr>
<tr>
<td>V-300</td>
<td>86.91 ab</td>
<td>64.60</td>
<td>75.23 bc</td>
<td></td>
</tr>
<tr>
<td>V-52</td>
<td>97.62 c</td>
<td>67.17</td>
<td>90.13 a</td>
<td></td>
</tr>
<tr>
<td>V-265</td>
<td>41.67 f</td>
<td>27.46</td>
<td>13.63 gh</td>
<td></td>
</tr>
<tr>
<td>V-426</td>
<td>19.05 ef</td>
<td>19.19</td>
<td>4.53 l</td>
<td></td>
</tr>
<tr>
<td>V-215</td>
<td>97.62 a</td>
<td>72.54</td>
<td>96.61 a</td>
<td></td>
</tr>
<tr>
<td>V-268</td>
<td>26.57 a</td>
<td>19.93</td>
<td>67.05 ab</td>
<td></td>
</tr>
<tr>
<td>V-259</td>
<td>17.95 f</td>
<td>20.50</td>
<td>4.96 h</td>
<td></td>
</tr>
<tr>
<td>V-201</td>
<td>80.95 ab</td>
<td>63.53</td>
<td>4.96 h</td>
<td></td>
</tr>
<tr>
<td>V-422</td>
<td>50.00 cd</td>
<td>53.44</td>
<td>34.09 ef</td>
<td></td>
</tr>
<tr>
<td>Manik</td>
<td>75.26 ab</td>
<td>59.23 c</td>
<td>62.63 d</td>
<td></td>
</tr>
<tr>
<td>BARI 10</td>
<td>25.76 d</td>
<td>27.15 ef</td>
<td>59.24 d</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>2.36</td>
<td>16.65</td>
<td>10.25</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) in a column are not significantly different at 1% level.

Table 2: Reaction of 15 tomato cultivars/lines against early blight under field conditions

<table>
<thead>
<tr>
<th>Varieties</th>
<th>% plant</th>
<th>% infected leaves</th>
<th>% leaf area infected (incidence)</th>
<th>Plant (LAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-187</td>
<td>64.26 a</td>
<td>36.78 b</td>
<td>62.00 a</td>
<td></td>
</tr>
<tr>
<td>V-378</td>
<td>70.24 a</td>
<td>39.51 b</td>
<td>36.63 b</td>
<td></td>
</tr>
<tr>
<td>V-262</td>
<td>54.76 b</td>
<td>36.22 b</td>
<td>36.34 b-d</td>
<td></td>
</tr>
<tr>
<td>V-138</td>
<td>33.33 d</td>
<td>63.14 a</td>
<td>16.76 c-e</td>
<td></td>
</tr>
<tr>
<td>V-300</td>
<td>28.75 g</td>
<td>42.16 g</td>
<td>37.59 bc</td>
<td></td>
</tr>
<tr>
<td>V-52</td>
<td>10.53 l</td>
<td>10.36 c</td>
<td>6.67 e</td>
<td></td>
</tr>
<tr>
<td>V-265</td>
<td>52.37 c</td>
<td>72.94 a</td>
<td>64.46 a</td>
<td></td>
</tr>
<tr>
<td>V-426</td>
<td>69.05 b-c</td>
<td>69.15 a</td>
<td>37.49 bc</td>
<td></td>
</tr>
<tr>
<td>V-215</td>
<td>8.37 a</td>
<td>17.95 c</td>
<td>17.73 d b</td>
<td></td>
</tr>
<tr>
<td>V-259</td>
<td>74.82 a</td>
<td>73.12 a</td>
<td>64.55 a</td>
<td></td>
</tr>
<tr>
<td>V-201</td>
<td>73.99 a</td>
<td>73.20 a</td>
<td>60.75 a</td>
<td></td>
</tr>
<tr>
<td>V-422</td>
<td>45.23 d</td>
<td>38.03 b</td>
<td>20.32 b-e</td>
<td></td>
</tr>
<tr>
<td>Manik</td>
<td>38.10 e</td>
<td>48.11 b</td>
<td>37.10 b c</td>
<td></td>
</tr>
<tr>
<td>BARI 10</td>
<td>73.74 ab</td>
<td>67.00 a</td>
<td>67.32 a</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>10.18</td>
<td>19.92</td>
<td>19.00</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) in a column are not significantly different at 1% level.

Table 3: Reaction of tomato cultivars/lines to late blight (Phytophthora infestans) and early blight (Alternaria solani)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>List of tomato cultivars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late blight</td>
<td>Early blight</td>
</tr>
<tr>
<td>Highly resistant</td>
<td>V-426, V-269</td>
</tr>
<tr>
<td>Moderately resistant</td>
<td>V-366, V-187</td>
</tr>
<tr>
<td>Tolerant</td>
<td>V-200, V-427</td>
</tr>
<tr>
<td>Highly susceptible</td>
<td>V-265, V-300, V-268</td>
</tr>
</tbody>
</table>

In case of late blight of tomato, cultivars/lines were classified using O-6 scale. In case of early blight of tomato, cultivars/lines were classified using O-5 scale (Vakulancis, 1983).

Anonymous (1995) also revealed such wide range of leaf area infection (7.2-100%). In check cultivar Manik, percent leaf area infected was 82.69 (Table 1). This was very similar to the finding of Anonymous (1995), where it was 85.8%. Two genotypes (V-426 and V-259) were found to be resistant to late blight of tomato (Table 3) and one genotype (V-52) was found to be resistant to early blight of tomato (Table 3). Although the genotype V-52 was found resistant to early blight of tomato but found highly susceptible to late blight of tomato. The result has similarity with previous reports made by some author’s findings and Institutions Annual reports such as Mungu (1996), Anonymous (1990a), Anonymous (1990b) and Kaur et al. (1988). Two genotypes (V-385 and V-187) were found moderately resistant (MR) to late blight (Table 3). Suhari (1986) and Anonymous (1990b) reported that they located 6 and 12 tolerant entries/lines out of 27 and 58 entries/lines to late blight. The present study observed 2 genotypes (V-282 & V-422) tolerant (T) to late blight of tomato out of 15 genotypes (Table 3). Anonymous (1989, 1990b) reported that 2, 5 and 10 entries/lines were found moderately susceptible out of 11, 23 and 58 entries/lines and the present study observed 4 genotypes (V-378, V-138, V-268, BARI 10) moderately susceptible (MS) to late blight disease of tomato and 2 genotypes were found highly susceptible (V-52 and V-215) to late blight (Table 3). The observations are supported by Anonymous (1990b), Anonymous (1989) and Kaur et al. (1988). Three genotypes (V-138, V-201, V-215) were found to be moderately resistant, six genotypes (V-378, V-282, V-330, V-426, V-422 and cv. Manik) were found moderately susceptible, four genotypes (V-137, V-385, V-268, BARI 10) were susceptible and one genotype (V-259) was found highly susceptible to early blight of tomato (Table 4). Begum (1992) found 14 genotypes moderately resistant out of 40 genotypes. The highest incidence of early blight caused by Alternaria solani was found in advance line V-269 and the lowest incidence was found in V-215. The lowest and the highest per cent infected leaves/plant were observed in V-62 and V-259 respectively. The severity of percent leaf area infected due to early blight varied from 8.67 to 80.75. The lowest severity (% LAI) was found in V-269 and the highest severity (% LAI) was found in V-259 (Table 2). Out of 15 advance genotypes none was found highly resistant to early blight. However one material (V-52) was found resistant. 3 (V-137, V-215, V-210) were moderately resistant, 6 (V-378, V-282, V-330, V-426, V-422 and Manik) were moderately susceptible, 4 (V-137, V-395, V-258 and cv. BARI 10) were susceptible and one was highly susceptible (V-259) to early blight disease of tomato (Table 3). Different workers found different percentages of resistant cultivars/geneotypes in their respective studies. Srithra et al. (1983), Avadav and Shcherbina (1988), Begum (1992), Banerjee et al. (1998a) and Banerjee et al. (1998b) found 9, 5, 9, 23 and 7 resistant lines to early blight respectively of 38, 200, 40, 81 and 54 cultivars/geneotypes. Three genotypes (V-138, V-215 and V-201) were found to be moderately resistant (Tables 3) to early blight. In different screening 15, 13 and 22 moderately resistant genotypes were obtained out of 40, 38 and 81 cultivars/lines by Begum (1992), Banerjee et al. (1998a, 1998b) and Anonymous (1984).

It is interesting to note that among the fifteen test lines, no genotype was found to be resistant simultaneously to both Phytophthora infestans and Alternaria solani. On the contrary the genotype which has shown considerable amount of resistance to Phytophthora infestans (viz. V-259, V-378 & V-426) suffered from very high incidence and severity of Alternaria blight. Among the tested lines V-215 was found to be susceptible to both the designated pathogens. The check cultivars, Manik and BARI-10 were also found to be susceptible to both of
these major tomato diseases and these cultivars need replacement.
For that matter manipulation-recombination of resistant genes
must be continued to breed new cultivars fairly resistant to
both of these major pathogens without compromising the
agronomic characters and market-qualities. The advanced test
tomato lines V-378, V-426, V-256, V-215, V-62 could be
used as the sources of resistance.

References
Anonymous, 1985. Plant disease scoring scale. Department of
Plant Pathology, BARI, Joydebpur, Gazipur, p: 11.
Anonymous, 1990a. Screening of tomato varieties/lines
against late blight. Annual Report (1989-90). BARI,
Joydebpur, Gazipur, pp. 272-274
Anonymous, 1990b. Evaluation of some entries/lines of
BARI, Joydebpur, Gazipur, pp: 189-186
Anonymous, 1995. Field evaluation of advanced lines/varieties
of winter tomato against late blight, mosaic and root-knot.
199.
Anonymous, 1997. Field evaluation of advanced hybrid
lines/varieties of winter tomato against late blight, mosaic
tomatoes to Alternaria. Tsitologiya I Genetika, 22: 21-27
Banerjee, M.K., Kaloo and P.S. Saini, 1988a. Screening of
tomato varieties/advance lines against early blight under
Banerjee, M.K., M.L. Chhabra, A.P. Garg and P.S. Saini,
1988b. Screening of tomato genotypes against Alternaria
109-113
Agril. Res. Coun. Farmgate, New Airport road, Dhaka-
1215. p: 72.
des Bureau of Statistics, Ministry of Planning,
Govt. of Bangladesh, p: 65.
Begum, S.N., 1992. Screening of tomato genotypes for
resistance to early blight caused by Alternaria solani.
Bangla J. Bot., 21: 131-133
Ellis, M.B. and I.A.S. Gibson, 1975. Alternaria solani. CMI
Descriptions of pathogenic Fungi and Bacteria. No. 475
FAO., 1999. FAO Quarterly Bulletin of Statistics. Food and
Agricultural Organization, Rome, 12: 79-80
Agricultural Research. John Willey and Sons, New York,
400-620
Ingram, D.H. and P.H. Williams, 1971. Advances in Plant
Variability in tomato for resistance to late blight under field
conditions. Ind. Phytopathol., 41: 486-487
Munugu, L.S., R.T. Reuben and J. Godvin, 1996. Early and
late blight development of local and exotic tomato
(Lycopersicon esculentum) germplasm collection under
field conditions at Morogoro. Tanzania Research & Training
News Letter (Dar es Salam). 11: 9-14
Singh, R.S., 1986. Disease of vegetable crops. Oxford and
IBH Publishing Co. New Delhi, p: 441
tomato cultivars to early blight. The Madras Agric. J., 70:
488-489
J. Agric. Res., 1: 71
Vakalounakis, D.J., 1983. Evaluation of tomato cultivars for
139
Watterson, J.C., 1988. Diseases. The tomato crops. Edited by
Atherton and Rudch. Chapman and Hall Ltd. NY, pp: 461-
462
Diseases of potato, tomato, brinjal, lady's finger and
country bean and their control (in Bengali). Bangla Press.
BARC. Dhaka. 20: 65