Effect of Zinc and Cobalt on Germination and Seedling Growth of *Pennisetum americanum* (L.) Schumann and *Parkinsonia aculeata* L.

Naziq Burhan, S. Shahid Shaukat and Asmat Tahir
Department of Botany, University of Karachi, Karachi -75270, Pakistan

Abstract: The effects of heavy metals cobalt and zinc on germination, seedling growth, and dry biomass accumulation of two species viz., *Pennisetum americanum* and *Parkinsonia aculeata* were investigated. Cobalt and zinc were used as nitrate and chloride. Final germination was reduced greatly at higher concentrations. Germination reduction was markedly higher in *Pennisetum* compared to *Parkinsonia*. Reduction in root growth was relatively greater than the shoot growth. *Parkinsonia* exhibited some degree of tolerance against heavy metals in terms of germination, root and shoot growth and dry biomass accumulation. The mechanisms of tolerance and co-tolerance to heavy metals are discussed.

Keywords: Heavy metals, zinc, cobalt, toxicity, tolerance, co-tolerance

Introduction
Heavy metals are generally considered toxic to cells. There are about 60 metals that are of special interest with respect to the toxicological importance, to human health, plants and animals. Use of pesticides and fertilizers, containing metals on agricultural land is a cause of heavy metal contamination (Vlamis et al., 1986). Toxic metals first accumulate in soil to reach the plant through roots or are taken up by the leaves of the plants from the atmosphere. High concentrations of zinc have been reported in some plant species growing along the Super Highway near Karachi (Iqbal et al., 1999). Heavy metals can cause various toxic effects on plants such as inhibition of seed germination, plant growth and yield reduction (Shaukat et al., 1999) and alternation of normal metabolic pathways including respiration and photosynthesis by disrupting cellular enzymes (Krupa et al., 1993).

Zinc is an essential element in nutrition and its traces are present in many foods. Many workers have reported the toxic effects of zinc (Lavengood et al., 1999). Woolhouse (1983) reported the toxicity and tolerance in plants in response to heavy metals including cobalt and zinc. Rauser (1973) also reported the phytotoxic effects of cadmium, cobalt, nickel and zinc. The objectives of this study were to investigate: (1) the effect of cobalt and zinc on germination and early seedling growth of a crop plant *Pennisetum americanum* L. Schumann and a tree species *Parkinsonia aculeata* L., (2) the tolerance levels to heavy metals in the two test species.

Materials and Methods
The seeds of *Pennisetum americanum* were obtained from Cereal Disease Research Institute, Karachi University Campus, while that of *Parkinsonia aculeata* were collected from the University Campus. Because of their hard seed coat, the seeds of *P. aculeata* were scarified using sand paper.

Different concentrations (25, 50, 100, 200 and 400 ppm) of CoCl₂, Co(NO₃)₂, ZnCl₂, Zn(NO₃)₂, were prepared with distilled water. Germination was investigated in 9 cm diameter sterilized Petri plates having Whatman No. 1 filter paper. Twenty surface sterilized seeds (with 0.3 percent calcium hypochlorite) of *Pennisetum americanum* and 15 seeds of *Parkinsonia aculeata* were placed on filter paper in Petri plates containing 5 ml of aqueous solution of CoCl₂, Co(NO₃)₂, ZnCl₂ and Zn(NO₃)₂. All concentrations were based on the proportion of heavy metals in the salt. Distilled water was used for controls. The treatments were replicated four times each. The Petri plates were kept at 26 ± 2°C day temperature and 18 ± 2°C night temperature. Light intensity at the top of Petri plates was 25 lux. The plates were kept wet throughout the experiment. Small amounts of respective solutions were added periodically when it was obvious that Petri plates were beginning to dry out, while small amount of distilled water was added in the controls.

The rate of germination was recorded daily and it was considered completed after 7 days when there was no chance for further germination. After the completion of germination, root and shoot lengths were measured and seedlings were placed in oven at 80°C for 24 h. and dry weight recorded.

The collected data was subjected to appropriate statistical analysis following Zar (1994). A 50% tolerance level (TL₅₀) at which shoot growth was reduced to 50%, was computed using the formula added by Davis et al. (1972), as follows:

\[
\text{TL}_{50} = \frac{C_1 - C_2}{C_1 - (50 - P_1)} \times (P_2 - P_1)
\]

Where \(C_1 \) = highest concentration giving less than 50% growth reduction, \(C_2 \) = lowest concentration giving more than 50% growth reduction, \(P_1 \) = percentage growth at \(C_1 \), and \(P_2 \) = percentage growth at \(C_2 \).

Results

Germination
Effect of cobalt nitrate and cobalt chloride on seed germination of *Pennisetum americanum*: Both cobalt nitrate and cobalt chloride significantly (p < 0.05) inhibited the final germination percentage at 200 and 400 ppm, but at lower concentrations germination remained unaffected (Fig. 1a & 1b). The effect of cobalt chloride did not differ significantly from that of cobalt nitrate.

Effect of zinc nitrate and zinc chloride on seed germination of *Pennisetum americanum*: Zinc nitrate significantly inhibited seed germination of *P. americanum* at all concentrations over the control (p at the most 0.05) (Fig. 2a). While zinc chloride also gave significant inhibition of germination at 50 ppm.
Table 1: Effect of cobalt nitrate and chloride on dry biomass (g) of Pennisetum americanum and Parkinsonia aculeata

<table>
<thead>
<tr>
<th>Conc. (ppm)</th>
<th>Pennisetum americanum</th>
<th>Parkinsonia aculeata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co(NO₃)₂</td>
<td>CoCl₂</td>
</tr>
<tr>
<td>0</td>
<td>0.3457 ± 0.0470</td>
<td>0.2487 ± 0.0386</td>
</tr>
<tr>
<td>25</td>
<td>0.2547 ± 0.0335</td>
<td>0.08907 ± 0.0204</td>
</tr>
<tr>
<td>50</td>
<td>0.1855 ± 0.0361</td>
<td>0.05983 ± 0.0053</td>
</tr>
<tr>
<td>100</td>
<td>0.1538 ± 0.0143</td>
<td>0.04465 ± 0.0037</td>
</tr>
<tr>
<td>200</td>
<td>0.14795 ± 0.0164</td>
<td>0.02737 ± 0.0084</td>
</tr>
<tr>
<td>400</td>
<td>0.06246 ± 0.0178</td>
<td>0.0238 ± 0.0049</td>
</tr>
</tbody>
</table>

Table 2: Effect of zinc nitrate and chloride on dry biomass (g) of Pennisetum americanum and Parkinsonia aculeata

<table>
<thead>
<tr>
<th>Conc. (ppm)</th>
<th>Pennisetum americanum</th>
<th>Parkinsonia aculeata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn(NO₃)₂</td>
<td>ZnCl₂</td>
</tr>
<tr>
<td>0</td>
<td>0.2866 ± 0.0222</td>
<td>0.3871 ± 0.116</td>
</tr>
<tr>
<td>25</td>
<td>0.1046 ± 0.0111</td>
<td>0.0331 ± 0.0016</td>
</tr>
<tr>
<td>50</td>
<td>0.0847 ± 0.0035</td>
<td>0.03223 ± 0.002</td>
</tr>
<tr>
<td>100</td>
<td>0.0769 ± 0.0078</td>
<td>0.0358 ± 0.0021</td>
</tr>
<tr>
<td>200</td>
<td>0.115 ± 0.0184</td>
<td>0.0391 ± 0.0016</td>
</tr>
<tr>
<td>400</td>
<td>0.1197 ± 0.0100</td>
<td>0.023 ± 0.0016</td>
</tr>
</tbody>
</table>

Table 3: TL₅₀ values of different compounds for Pennisetum americanum and Parkinsonia aculeata

<table>
<thead>
<tr>
<th>Compound</th>
<th>P. americanum</th>
<th>P. aculeata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt nitrate</td>
<td>25.88</td>
<td>350.00</td>
</tr>
<tr>
<td>Cobalt chloride</td>
<td>30.7</td>
<td>>400.00</td>
</tr>
<tr>
<td>Zinc nitrate</td>
<td>95.76</td>
<td>172.22</td>
</tr>
<tr>
<td>Zinc chloride</td>
<td>34.25</td>
<td>>400.00</td>
</tr>
</tbody>
</table>

 onwards (p < 0.05 for 50, p < 0.01 for 100, 200 and 400 ppm) (Fig. 2b). Inhibitory effect of zinc nitrate was closely similar to that of zinc chloride.

Effect of cobalt nitrate and cobalt chloride on seed germination of Parkinsonia aculeata: P. aculeata exhibited some degree of tolerance to cobalt nitrate and cobalt chloride compared to the P. americanum (Fig. 3a & 3b). Both cobalt nitrate and chloride significantly inhibited seed germination over the controls at 100 ppm onwards (p < 0.05). The effect of cobalt nitrate did not differ significantly from that of cobalt chloride.

Effect of zinc nitrate and zinc chloride on seed germination of Parkinsonia aculeata: Zinc nitrate showed significant inhibition of final germination at 200 and 400 ppm only (p < 0.05) (Fig. 4a). On the other hand zinc chloride showed some fluctuations and the final germination was significantly inhibited only at 400 ppm (Fig. 4b). P. aculeata exhibited tolerance to zinc, with regard to germination, as compared to P. americanum.

Seedling growth

Effect of cobalt nitrate and chloride on seedling growth of Pennisetum and Parkinsonia: Cobalt nitrate significantly inhibited the root and shoot length of P. americanum (p < 0.01) at all concentrations except that shoot growth was not significantly influenced at 25 ppm (Fig. 5a). Whereas cobalt chloride inhibited the root length at all concentrations (p < 0.001), while shoot growth was inhibited over the controls at 50 ppm onwards (p at the most 0.05) (Fig. 5b). Root growth was affected to a greater extent in comparison.
Fig. 2: Effect of zinc on seed germination percentage of Pennisetum americanum a) zinc nitrate b) zinc chloride

Fig. 3: Effect of cobalt on seed germination percentage of Parkinsonia aculeata a) cobalt nitrate b) cobalt chloride

with shoot growth. In case of P. aculeata, cobalt nitrate significantly retarded the root length at 200 and 400 ppm, while the shoot growth was significantly reduced at 400 ppm only (p < 0.01) (Fig. 8a). Both root and shoot growth were reduced by cobalt chloride at 80 ppm onwards (p at the most 0.05) (Fig. 8b). Cobalt nitrate showed greater inhibitory effect on the seedling growth of both the species compared to cobalt chloride. P. americanum was found more susceptible to cobalt toxicity than P. aculeata.

Effect of zinc nitrate and zinc chloride on seedling growth of Pennisetum and Parkinsonia: Zinc nitrate showed inhibitory effect on seedling growth of P. americanum and both root and shoot growth were significantly reduced at all concentrations (p at the most 0.01) (Fig. 7a). Similarly, zinc chloride also significantly inhibited root and shoot growth at all concentrations (p < 0.001) (Fig. 7b). Root growth of P. aculeata was significantly reduced by zinc nitrate at 100 ppm and above (p < 0.05), whereas shoot growth was significantly reduced at all concentrations (p at the most 0.05) (Fig. 8a). Zinc chloride inhibited the root growth of P. aculeata at 100 ppm and above (p < 0.05), while shoot growth was reduced at 400 ppm only (p < 0.05) (Fig. 8b).

Seedling dry biomass

Effect of cobalt nitrate and chloride on the dry biomass accumulation of Pennisetum and Parkinsonia: Cobalt nitrate significantly reduced the dry biomass in P. americanum at all concentrations over the control (p at the most 0.01). Greater reduction occurred at higher concentrations. P. aculeata exhibited some tolerance to cobalt nitrate since dry weight reduction occurred at only 400 ppm (Table 1). Cobalt chloride drastically reduced the dry weight accumulation in P. americanum at all concentrations over the control (p < 0.001). Although in P. aculeata significant reduction in dry biomass was observed at all concentrations but the reduction was of less order as compared to that in P. americanum (p at the most 0.05) (Table 1).

Effect of zinc nitrate and chloride on biomass of Pennisetum and Parkinsonia: Dry biomass of P. americanum was significantly reduced at all concentrations over the control by zinc nitrate (p < 0.001). In case of P. aculeata significant decrease in biomass occurred at all concentrations (p at the
Burhan et al.: Effect of zinc and cobalt on plants

Fig. 4: Effect of zinc on seed germination percentage of Parthenium aculeata a) zinc nitrate b) zinc chloride

Fig. 6: Effect of cobalt on seedling growth (root and shoot length) of Parthenium aculeata a) cobalt nitrate b) cobalt chloride

Fig. 5: Effect of cobalt on seedling growth (root and shoot length) of Pennisetum americanum a) cobalt nitrate b) cobalt chloride

Fig. 7: Effect of zinc on seedling growth (root and shoot length) of Pennisetum americanum a) zinc nitrate b) zinc chloride
Burhan et al. Effect of zinc and cobalt on plants

![Chart showing the effect of zinc and cobalt on plants](image)

Fig. 8: Effect of zinc on seedling growth (root and shoot length) of *Pennisetum acutata* a) zinc nitrate b) zinc chloride

most 0.05), though the reduction was not as high as in *P. americanum* (Table 2).

Dry weight of *P. americanum* was remarkably reduced by zinc chloride at all concentrations over the control (p < 0.001). In *P. acutata* significant decrease by zinc chloride occurred at 100 and 400 ppm (p < 0.011 (Table 2).

TLCh Values: For *P. americanum* TLCh values ranged from 25.89 to 94.25 ppm for different compounds (Table 3) in following order:

Co(NO3)2 < CoCl2 < ZnCl2 < Zn(NO3)2

In case of *P. acutata* TLCh ranged from 350 to >400 ppm.

The order of TLCh for *P. acutata* was:

Zn(NO3)2 < Co(NO3)2 < CoCl2 = ZnCl2

The results showed that cobalt nitrate had lowest TLCh value in *P. americanum* and zinc nitrate had lowest value in *P. acutata*.

Discussion

Cobalt and zinc clearly have inhibitory effect on the germination and seeding growth of the test species. Germination inhibition due to heavy metals has been reported by many workers (Al-Helal, 1995; Shaukat et al., 1999). Ionic toxicity might be the cause of drastic effects of salts on seed germination (Shaukat et al., 1998). It is possible due to osmotic affects (Shaukat et al., 1998). Different species show different levels of tolerance to heavy metals (Anwer et al., 2000).

It is clear from the results that *Pennisetum* is more susceptible to the salts of cobalt and zinc than *Pennisetum*. Zinc nitrate had greater inhibitory effect on germination and seeding growth than zinc chloride. Similarly, cobalt nitrate had greater effect than cobalt chloride. *Pennisetum* was found less liable to heavy metal toxicity with respect to all parameters of growth compared to *Pennisetum*. Thus, it exhibits certain degree of tolerance and co-tolerance to heavy metals. It is observed that *Pennisetum* usually grows in polluted areas and therefore, it is plausible that it has developed resistance against heavy metals. Several workers have reported the presence of heavy metals like Cd, Cr, Pb, Zn, Cu and Ni in industrial and sewage effluents (Smith, 1997). Earlier studies of Shaukat et al. (1998) also suggested certain degree of heavy metal tolerance for *Pennisetum acutata*. *Pennisetum americanum* which is cultivated in the agricultural fields, grows in comparably less polluted conditions. Evidently, it exhibits much less tolerance to heavy metals as compared to *Pennisetum*. This result paralleled the findings of Von Fredecke-Ismann and Hutchinson (1993). Since salts of both zinc and cobalt had less inhibitory effect on germination and seeding growth of *Pennisetum*, it exhibits the phenomenon of co-tolerance. It is also evident that the root growth of both the test species was significantly reduced at higher concentrations of salts. These results accord with those of Anwer et al. (2000) who observed zinc tolerance in pasture and mine populations of *Andropogon odoratus*. Likewise, Bhat and ten Bokum (1992) found reduction in root growth of *Sisyrinchium italicum* while studying copper tolerance in this species. The results also showed that root growth of the test species was affected to a greater degree than shoot growth, by heavy metals. Similar results have also been reported by other investigators (Shaukat et al., 1998; Anwer et al., 2000). The differential response of root and shoot growth to heavy metals might be due to more accumulation of heavy metals in roots than in shoots, or rapid detoxification in the shoot than in roots (Al-Helal, 1995).

From the above study, it is concluded that seed germination, seeding growth and dry weights of both the test species were reduced by different concentrations of cobalt chloride, cobalt nitrate, zinc chloride and zinc nitrate. Furthermore, *Pennisetum* was found more susceptible to heavy metals than *Pennisetum* and root and shoot growth responded differentially to the heavy metal stress.

References

