Comparative Analysis on the Purified Amylases from Healthy and Diseased Sugarcane Juice

M. Habibur Rahman, Md. Selim Uddin, Nural Islam, Farjana Nikkon and M. Fida Hasan
Department of Biochemistry, Rajshahi University, Rajshahi-6205, Bangladesh

Abstract: Amylase was purified from the juice of healthy and diseased sugarcane, Ishurdi (led)-20 by successive chromatographies on DEAE-Sephadex A-50 and Sephadex G-150 to a homogeneous state as confirmed by polyacrylamide disc gel electrophoresis (PAGE). The molecular weights of the enzyme from healthy and diseased sugarcane juices were estimated as 56.8 and 56.3 kDa, respectively by gel filtration. The purified amylases were of κ-type and not a glycoprotein in nature. The purified amylases showed the following characteristics, respectively: K_m values 0.21% and 0.23%, optimum pH 6.4 and 6.3; and optimum temperature 50°C and 40°C for starch as substrate. Ca^{2+}, Mg^{2+}, and Mn^{2+} increased amylase activities remarkably. The activities of amylases were increased slightly by Zn^{2+}. On the other hand, Cu^{2+} and Fe^{3+} increased amylase activity moderately. Na^+ had almost no effect on the amylase activity. Ag^+ and K^+ produced a little inhibitory effect but Cu^{2+} inhibited amylase activities moderately. EDTA and acetic acid almost completely ceased amylase activities. Both amylases were found to contain 70% activity in presence of 8M urea.

Key words: Sugarcane, amylase, red-rot and C. falcatus

Introduction
Starch is the principal storage polysaccharide in plant cells. Investigation of the enzymatic mechanism of starch degradation in several plant tissues led to the assumption that α-amylase plays a major role in attack on starch granules in vivo (Steup, 1988). A variety of α-amylases, mostly from microbial, mammal and cereal sources were well characterized and the enzymes belong to a large family of α-proteins which show several structural features (Svensson, 1994). Amylase is an industrially important enzyme which hydrolyzes starch into glucose, maltose and dextrin and used in liquefaction of starch for production of glucose, fructose and maltose, baked goods, brewing, textiles, detergents and sugar industries (Creuger and Creuger, 1990).

Sugarcane is the sugar producing crop in Bangladesh and plays very important role in national economy. A reasonable portion of total population of Bangladesh are associated with sugarcane cultivation and sugar industries for their living hood. Annually 0.2 million tons of sugar and 0.3 million tons gur are produced from sugarcane. Some other commercial products such as industrial alcohol, paper and paper-board are also manufactured from by-products of sugarcane. But the yield of gur is quite low in Bangladesh because a lot of sugarcane fields are adversely affected by various diseases especially red rot causing pathogen Colletotrichum falcatus Went. Our previous experimental results (data not shown) showed that the amylase content of sugarcane juice increased remarkably when infected with the pathogen Colletotrichum falcatus Sharma and Seema Wahab (1976) reported that the amylase activity was increased in Luffa cylindrica when infected with Pythium sphanamum. From a comparative point of view, we have purified and characterized amylase from healthy and diseased sugarcane juices.

Materials and Methods
Sugarcane was collected from Harian, Rajshahi, Bangladesh. DEAE-Sephadex A-50 and Sephadex G-150 were the products of Sigma Chemicals Co., USA.

Preparation of crude enzyme extract: Unless mentioned otherwise, all the operations were performed at 4°C. The nodal tissue from sugarcane (200 gm) were cut into small pieces and ground in a mortar with 80 ml of 50 mM cold Tris–HCl buffer, pH 7.4 and finally crushed into paste using a homogenizer. The suspension was then filtered through double layers of cheese cloth and the filtrate was clarified further by centrifugation at 6,000 rpm for 15 minutes. The clear supernatant was concentrated to about one fourth of the original volume by commercial sucore and dialyzed against 50 mM Tris–HCl buffer (pH 7.4) for 24 hours. This dialyze was then centrifuged at 7,000 rpm for 6 minutes and clear supernatant was used as crude enzyme extract.

DEAE-Sephadex column chromatography: The crude enzyme extract was loaded onto a DEAE-Sephadex A-50 column pre-equilibrated with 50 mM Tris-HCl buffer (pH 7.4) containing 5 mM CaCl$_2$ and the protein was eluted with a gradient of 1M NaCl in the same buffer at a flow rate of 20-30 ml hr$^{-1}$. Enzyme activity and protein concentration were determined at one fraction (3 ml) intervals.

Sephadex G-150 column chromatography: The active fractions from DEAE-Sephadex chromatography were collected and dialyzed against 50 mM Tris-HCl buffer, pH 7.4 for 24 hours. After centrifugation, the clear supernatant was loaded onto a Sephadex G-150 column pre-equilibrated with 50 mM Tris-HCl buffer (pH 7.4) and the protein was eluted with the same buffer at a flow rate of 10-20 ml hr$^{-1}$. Enzyme activity and protein concentration were monitored at one fraction (3 ml) intervals.

Protein concentration and amylase activity: Protein concentration was determined by the method of Lowry et al. (1951) using BSA as standard. Amylase activity was assayed by the method as described by Mahadevan and Sridhar (1982). 1% starch solution was used as substrate. The amylase activity was measured by estimating the amount of glucose released. One unit of amylase activity was defined as "the amount of enzyme required for liberating 1 mg of glucose per minute at 37°C".

Polyacrylamide disc gel electrophoresis: Purity of enzymes at each step of purification were checked by polyacrylamide disc gel electrophoresis (PAGE) following the method as described by Ornstein (1984) on 7.5% gel (pH 8.6).

Molecular weight determination: Molecular weight of the purified amylase was determined by gel filtration on Sephadex G-150 column (0.9 x 90 cm) as described by Andrews (1966). Trypsin (20 kDa), Egg albumin (45 kDa), Bovine serum albumin (87 kDa), β-galactosidase (160 kDa) and β-amylase (200 kDa) were used as molecular weight marker. Marker
proteins and unknown proteins were applied separately onto Sephadex G-150 column under identical conditions. Concanavalin brilliant blue was used as staining reagent.

Effect of pH and temperature: The activities of amylases were measured at different pH values (3.0-9.5) at 37°C by the procedure of Mahadevan and Sridhar (1982). 1% starch solution was used as substrate and the activities of the amylases were measured at different temperatures (10-80°C) using 0.1 M acetic acid-sodium acetate buffer, pH 7.5, following the procedure of Mahadevan and Sridhar (1982).

Effect of various metal ions and certain compounds: The effect of different metals and compounds on enzyme activity was tested using different concentrations of metallic salts or compounds according to Mahadevan and Sridhar (1982).

Results and Discussion

Purification of amylase: Almost identical experimental conditions were maintained to compare the elution profile of amylases from healthy and diseased sugarcane juices during the purification steps. Fig. 1 and 2 showed the ion exchange chromatography of crude enzyme extract on DEAE-Sephadex A-50. Both fractions containing amylase activity were eluted with 1 M NaCl containing initial buffer solution. The active fractions (F-1b from healthy and F-1l from diseased sugarcane juices) were pooled separately and further purified by Sephadex G-150 gel filtration chromatography. As shown in Fig. 3 and 4, both the fractions were eluted as two peaks. The elution profiles of the active fractions from both sources were found to be almost same. But the concentration of the enzyme extracted from diseased sugarcane juice was found to be higher than that of the healthy ones. As shown in Fig. 5, the amylase containing fractions F-1b and F-1l might contain pure enzyme, as they gave single band on polyacrylamide gel electrophoresis.

Tables 1 and 2 show the data on purification steps for amylases from healthy and diseased sugarcane juices. The specific activity of the enzyme was found to increase in each step. Although the yield was low, the purification was achieved about 40.76 and 42.82-fold for healthy and diseased sugarcane juices, respectively. The decrease in yield may be due to denaturation of the enzyme during lengthy purification procedures or for some other reasons.

Characterization of amylase: The purified enzyme from both the sources gave 100% hydrolytic activity in absence of EDTA but no activity was found when the substrate solution was premixed with 30 mM EDTA, an inhibitor of α-amylase (Garcia and Lauber, 1983). Further, the hydrolytic properties of the enzymes were found to remain unaffected in the presence of 10 mM cysteine or 20 mM HgCl2, an inhibitor of β-amylase. The results clearly showed that the purified amylases from both healthy and diseased sugarcane juices were of α-type. The purified amylases were not a glycoprotein in nature as it gave no colour with phenol sulfuric acid test (Crueger and Crueger, 1980). Molecular weight of the amylases purified from healthy and diseased sugarcane juices were estimated to be 56.8 and 66.3 kDa by gel filtration, respectively (Fig. 6). Molecular weights of the purified succarase α-amylase from the both the sources were very close to that reported for Aspergillus oryzae (51-52 kDa) and Aspergillus niger (88-91 kDa) by Crueger and Crueger (1980). As shown in Fig. 7, α-amylase activity of healthy and diseased sugarcane juices gave a characteristic bell-shaped curve against pH. Very similar pattern of pH profile has been

Table 1: Summary of purification of amylase from healthy sugarcane juice

<table>
<thead>
<tr>
<th>Steps</th>
<th>Total protein (mg)</th>
<th>Total activity units</th>
<th>Specific activity (units/mg)</th>
<th>Yield (%)</th>
<th>Purification fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>1.75</td>
<td>118</td>
<td>1.51</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>DEAE-Sephadex A-50</td>
<td>1.75</td>
<td>54</td>
<td>30.34</td>
<td>45.8</td>
<td>20.10</td>
</tr>
<tr>
<td>Chromatography</td>
<td>0.65</td>
<td>40</td>
<td>61.54</td>
<td>55.90</td>
<td>40.76</td>
</tr>
</tbody>
</table>

Table 2: Summary of purification of amylase from diseased sugarcane juice

<table>
<thead>
<tr>
<th>Steps</th>
<th>Total protein (mg)</th>
<th>Total activity units</th>
<th>Specific Activity (units/mg)</th>
<th>Yield (%)</th>
<th>Purification fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>1.02</td>
<td>164</td>
<td>1.61</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>DEAE-Sephadex A-50</td>
<td>2.11</td>
<td>77</td>
<td>35.49</td>
<td>45.95</td>
<td>22.67</td>
</tr>
<tr>
<td>Chromatography</td>
<td>0.64</td>
<td>57</td>
<td>67.96</td>
<td>34.76</td>
<td>42.15</td>
</tr>
</tbody>
</table>
Table 3: Effect of various metallic salts on the activity of amylase

<table>
<thead>
<tr>
<th>Various metallic salts</th>
<th>Concentration</th>
<th>Relative activity (%) Healthy</th>
<th>Diseased</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>71.64</td>
<td>70.17</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>69.27</td>
<td>67.07</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>61.29</td>
<td>64.60</td>
</tr>
<tr>
<td>KCl</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>95.67</td>
<td>84.57</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>86.95</td>
<td>61.48</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>82.06</td>
<td>89.02</td>
</tr>
<tr>
<td>AgCl</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>97.87</td>
<td>96.72</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>93.85</td>
<td>93.44</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>82.10</td>
<td>88.62</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>93.97</td>
<td>99.21</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>95.06</td>
<td>95.41</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>96.00</td>
<td>98.99</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>106.65</td>
<td>117.65</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>122.35</td>
<td>136.75</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>140.30</td>
<td>142.39</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>127.48</td>
<td>136.28</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>137.25</td>
<td>158.65</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>144.62</td>
<td>145.68</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>100.00</td>
<td>104.61</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>109.80</td>
<td>109.23</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>117.64</td>
<td>120.00</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>117.68</td>
<td>122.07</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>141.17</td>
<td>147.62</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>154.90</td>
<td>162.06</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>101.11</td>
<td>103.66</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>105.32</td>
<td>106.19</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>106.75</td>
<td>109.56</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>111.39</td>
<td>110.86</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>117.45</td>
<td>116.33</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>126.65</td>
<td>125.25</td>
</tr>
</tbody>
</table>

Table 4: Effect of urea, EDTA and acetic acid on the activity of amylase

<table>
<thead>
<tr>
<th>Concentration (Molar)</th>
<th>Relative activity (%) Healthy</th>
<th>Diseased</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Effct of urea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>92.60</td>
<td>92.00</td>
</tr>
<tr>
<td>2</td>
<td>87.03</td>
<td>89.93</td>
</tr>
<tr>
<td>3</td>
<td>82.32</td>
<td>85.22</td>
</tr>
<tr>
<td>4</td>
<td>75.92</td>
<td>80.00</td>
</tr>
<tr>
<td>5</td>
<td>70.37</td>
<td>73.18</td>
</tr>
<tr>
<td>b-Effct of EDTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>0.001</td>
<td>47.37</td>
<td>46.15</td>
</tr>
<tr>
<td>0.002</td>
<td>36.34</td>
<td>34.62</td>
</tr>
<tr>
<td>0.005</td>
<td>31.59</td>
<td>30.77</td>
</tr>
<tr>
<td>0.010</td>
<td>24.86</td>
<td>24.01</td>
</tr>
<tr>
<td>0.100</td>
<td>10.31</td>
<td>12.80</td>
</tr>
<tr>
<td>0.200</td>
<td>7.02</td>
<td>9.97</td>
</tr>
<tr>
<td>0.500</td>
<td>3.62</td>
<td>1.92</td>
</tr>
<tr>
<td>c-Effct of acetic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>35.48</td>
<td>33.78</td>
</tr>
<tr>
<td>2</td>
<td>24.13</td>
<td>24.22</td>
</tr>
<tr>
<td>3</td>
<td>17.74</td>
<td>18.92</td>
</tr>
<tr>
<td>4</td>
<td>12.90</td>
<td>13.51</td>
</tr>
<tr>
<td>5</td>
<td>9.87</td>
<td>9.46</td>
</tr>
<tr>
<td>10</td>
<td>4.83</td>
<td>4.07</td>
</tr>
</tbody>
</table>

Fig. 2: Stepwise elution profile of amylase from diseased sugarcane juice on DEAE-Sephadex A-50 column. Crude enzyme extract (102 mg protein) was applied to a column pre-equilibrated with 50 mM Tris-HCl buffer, pH 7.4 and eluted with the same buffer containing 1M NaCl.

Fig. 3: Stepwise elution profile of F-1 fraction on Sephadex G-150 column. Protein (1.75mg) was applied to a column pre-equilibrated with 50mM Tris-HCl buffer, pH 7.4 and eluted with the same buffer.

reported for the amylases from banana pulp (Mao et al., 1981). The maximum activity was demonstrated at pH 6.4 and 6.3 for healthy and diseased sugarcane juice amylases, respectively. Further, the activities were decreased gradually in the acidic pH but rapidly in the alkaline pH. This observation indicated that the purified enzyme from both sources were relatively stable in acidic region than that of alkaline. The acidic pH for α-amylase has been reported in Alternaria alternata (Chung and Huang, 1998) and in shoots and coleoptiles of pea seedlings (Beers and Duke., 1980). The activity of the enzymes increased gradually with temperature and the maximum activity was observed at 30°C for healthy and 40°C for diseased sugarcane juice. Further, the
activity decreased gradually with the increase in temperature and was abolished completely at or above 90°C (Fig. 2). The optimum temperature of 38°C for amylase of crude banana was reported by Mao and O’Brien (1981). Chung and Hwang (1986) also reported the optimum temperature of 40°C for Alternaria alternata α-amylase. The kinetic constants, K_m of the purified enzymes were estimated to be 0.27 and 0.173 for healthy and diseased sugarcane juice, respectively using 1% starch as substrate. K_m value 0.08-0.25% have been reported for amylases against starch as substrate in different.
activity of purified amylases was highly affected by certain compounds. As shown in Table 4, the activity of purified enzymes decreased in the presence of urea, EDTA, and acetic acid. The activities of amylase were gradually decreased with the increasing concentration of these compounds.

Remarkable increases in amylase activities in diseased sugarcane juice drawn our attention whether this enzyme is the same as that in healthy ones or is produced by the invading microorganisms, C. falcatus. Although a very negligible difference was observed in some properties of both the enzymes such as MW, pH, temperature, K_m, etc., the protein elution profile (Fig. 1, 2, 3 and 4) and the inhibition or acceleration pattern of the enzymes by some metal ions and certain compounds were almost the same (Table 3 and 4). The difference in molecular weight may be due to some specific interaction with the matrix components of Sephadex G-150 gel. It was concluded that α-amylase from healthy sugarcane juice was not different from that of the diseased sugarcane juice. The higher concentration of amylase in diseased sugarcane juice was probably due to the secretion of the enzyme by the invading pathogen for their metabolic purposes.

References

