Urinary Excretion of Acetylsalicylic Acid in Healthy Male Volunteers

Bazghah Sadaf Siddiqui, Haq Nawaz Bhatti, Ambreen Ijaz, Saba Rasheed and Bushra Saleem
Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Abstract: Acetylsalicylic acid is a non-steroidal anti-inflammatory drug. Urinary excretion of ASA (as free salicylic acid) was investigated in twelve healthy male volunteers after an oral administration of 600 mg dose. Urine samples were collected up to 10 h. The concentration of drug was determined colorimetrically and mean ±SE value in urine was found to be 37.55±0.418 µg mL⁻¹. The values for diuresis and rate of excretion was 0.028±0.006 mL min⁻¹ kg⁻¹ and 0.849±0.226 µg min⁻¹ kg⁻¹. The amount of free SA excreted was 5.40±1.15 mg. The % dose excreted was 0.92±0.19%. Cumulative amount and % cumulative dose excreted was found to be 17.74±2.91 mg and 5.47±0.78%. There is slight variations in urinary excretion data when compared with foreign investigated values.

Key words: Acetylsalicylic acid, urinary excretion male volunteers, salicylate, Diuresis, Rate of excretion

Introduction
Acetylsalicylic acid most commonly known as Aspirin is a member of salicylate group of compounds. It is a non-steroidal anti-inflammatory drug (NSAID) that possesses analgesic, anti-inflammatory and antipyretic properties. It is effective in relieving pain such as headache, myalgia, arthralgia and other pain arising from integumental structures rather than visceras. Because of its high efficacy, low toxicity and low cost, it is a standard with which all other non-steroidal anti-inflammatory drug are compared (Simon and Mills, 1980).

Aspirin is a potent cyclooxygenase (COX) inhibitor which irreversibly inhibits cyclooxygenase (COX), the enzyme responsible for the production of prostaglandins both peripherally and in central nervous system. It can also be used for the secondary prevention of myocardial infarction and stroke by inhibiting the platelets cyclooxygenase, so aspirin produces the anticoagulant effect by prolonging the bleeding time (Reynolds, 1989). The studies shows the qualitative and quantitative difference in metabolism in human volunteers. Male and female showed different metabolism and hence different rate of excretion (Low, 1998).

Aspirin is hydrolyzed in stomach and in blood to salicylic acid and acetic acid, the biological half life is therefore only 20 min (Levy and Tsuehiya, 1972).

Salicylates are excreted mainly by kidney as salicylic acid(75%), free salicylic acid (10%), salicylic phenol (10%) and acyl (5%) glucuronides, and gentisic acid (<1%) when small doses (less than 250 mg in an adult) are ingested, all the pathways proceed by first order kinetics with an elimination half life of about 2-3 h. When higher doses are ingested (more than 4 g), the elimination half life becomes longer i.e. 15-30 h (Hartwig-Otto, 1983).

Dose and pH of urine have great effect on excretion rate. Excretion of salicylate increases four fold when pH of urine is ≥8.0. At this pH, drug is highly ionized due to acidic nature and can not readily diffuse from the tubular fluid (Wesley, 1990).

The biological, physiological and pharmacological influence of drug in local indigenous conditions has been found to be different in urinary excretion, metabolism and kinetic behaviour when compared with foreign investigated values (Nawaz, 1994) thererfor, the present study was undertaken for comprehensive evaluation of drug under local environmental conditions.

Materials and Methods
Volunteers: A total of twelve healthy human male volunteers having mean age 21.4 years, mean body weight 66.3 kg and mean body height 174.63 cm selected for this study. A written consent was signed by all volunteers. Blood pressure and body temperature of each volunteer was also recorded before the start of experiment.

Study protocol
Drug Used: Dispirin (soluble aspirin) tablets (300 mg) containing acetylsalicylic acid manufactured by Rekit Benekiser Pakistan Ltd., Karachi was used for oral administration to volunteers.

Sample Collection and Handling: Sampling was done in the month of May 2002. After an overnight fasting, a drug free/control urine sample was collected from each volunteer before the administration of drug. Two tablets of Dispirin (soluble aspirin 2x300 mg = 600 mg) were given orally to each volunteer and then allowed to take a standard breakfast 2 h following the drug administration.
The urine samples were collected for 10 hours at 30, 60, 120, 180, 240 and 600 min following oral administration of drug. Total volume and pH of each urine sample voided by each volunteer were recorded. Then known volume of each urine sample was preserved in plastic bottles and store at -20°C till further analysis.

Urine Analysis: The standard curve was made by preparing the stock solution of salicylic acid (SA) 1000 mg L⁻¹ of distilled water. From this stock solution of salicylic acid (SA) the working standards were prepared in drug free/control urine samples containing 50, 100, 150, 200, 250 and 300 µg mL⁻¹ salicylic acid solution.

Improved colorimetric method (Farid et al., 1975) was followed by taking 1 mL of standard urine and 0.5 mL of 6 M HCl in an extracting tube. This mixture was extracted twice with 10 mL of carbon tetrachloride (CCL₄). Organic layer was separated and 5 mL of 1.7% freshly prepared Fe(NO₃)₃ reagent was added to this organic layer. After shaking for 5 min a violet colour appeared immediately. 3 mL of this coloured layer was centrifuged for 10 min, at 3000 rpm and after standing for 20 min, absorbance was noted at 530 nm with the help of spectrophotometer (Hitachi Model U-2001) and concentration of free SA was determined. For the determination of free salicylic acid concentration in urine samples same standard procedure of drug free/control urine was followed.

Calculations

From concentration of free salicylic acid other parameters were calculated by using these formulas.

Concentration (mg ml⁻¹) = Standard factor x absorbance

\[
\text{Volume of urine in collection period (ml)(mm)min⁻¹kg⁻¹) = \frac{\text{Diuresis}}{\text{Time (min) x body weight (kg)}}}
\]

Amount of drug excreted (mg) = \(U_c \times U_v\)

\[
\text{Percentage of dose excreted} = \frac{\text{Amount of drug excreted (mg)}}{\text{Total dose (mg) given}} \times 100
\]

\[
\text{Percentage cumulative dose excreted} = \frac{\text{Cumulative amount excreted (mg)}}{\text{Total dose of (mg) given}} \times 100
\]

Rate of excretion = Diuresis (ml min⁻¹ kg⁻¹) x conc. Of salicylic acid excreted (µg mL⁻¹) µgmin⁻¹kg⁻¹

Statistical analysis: The results were given as mean±SE by subjecting the data in tabulated form to statistical calculation and correlation between rate of excretion and pH of urine was determined by means of regression and correlation analysis (Steel and Torrie, 1992).

Results and Discussions

The mean ±SE values for pH of urine voided by male volunteers was 6.17±0.18 while pH of urine voided by female volunteers was 6.04±0.14 (Fatima, 2002).

The mean±SE values for urine concentration of ASA as free SA at various time intervals have been plotted in Fig. 1.

The urine concentration at 30 min was 30.4±4.08 µg/mL which increases with the passage of time due to availability of free drug. The mean maximum urine concentration 69.5±25.2 µg mL⁻¹ was achieved at 60 min because that most free drug was found there at that time. After that it began to decrease and after 600 min (10 h) there was mean value of 33.78±4.04 µg mL⁻¹. Present study showed mean±SE value for concentration of ASA as free SA in urine of 12 male volunteers was 37.55±0.418 µg mL⁻¹. While in female volunteers it was found to be 44.66±0.39 microns mL⁻¹ (Fatima, 2002). Mays et al. (1984) reported that this value after 8h and at 975 mg dose was 85.0±11.1 µg mL⁻¹. The difference may be due to dose difference, sex and urine pH.

The rate of urine flow in a time period is called diuresis. The mean ±SE value for diuresis was 0.028±0.006 mL min⁻¹ kg⁻¹. The slight difference may be due to body weight, sex, volume and pH of urine voided by volunteers.

The rate of excretion of ASA as free SA was 0.849±0.226 µg min⁻¹ kg⁻¹. Rate of excretion has direct relationship with pH of urine as it increases with increase in pH of urine due to acidic drug and vice versa.

The amount of ASA (mg) excreted as free SA in urine of male volunteers was 5.40±1.15 mg. Fatima (2002) calculated the amount of ASA as free SA in female volunteers and the value was 6.45±1.19 mg. Amick and Mason (1979) reported that this value with 650 mg dose was 46.3 mg at time of 0-10 h. While Farid et al. (1975) reported the amount was 34.7±0.4 mg after 579.7 mg dose of sodium salicylate which is equivalent to 500 mg of salicylic acid.

![Fig. 1: Plot of urine concentration of salicylic acid (µg.ml⁻¹) excreted versus time (min) in male volunteers following oral dose of 2×300 mg aspirin](image)
Moreover urinary excretion data also differed when compared with foreign literature. Therefore the present project was designed to evaluate the dosage regimen of aspirin in our local environment.

References

