Biodistribution Study of the Radiopharmaceutical Sodium Pertechnetate in Wistar Rats Treated with Rutin

1Luciana C. Bernardo, 1Ana E.O. Santos, 1Danielle C. Mendes, 1Carolina K. Ribeiro, 1Maria L. Gomes, 1Gláucio Diré, 1Leandro M. Jesus, 1Paulo R.C. Abreu, 1Rafael Pereira, 1Jacques N.G. Frydman, 2Roberto S. Moura and 13Mario Bernardo-Filho

1Biophysics and Biometry Department 2Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, Universidade do Estado do Rio de Janeiro, Av. 28 de setembro, 87, 20551-030, Rio de Janeiro, RJ, Brasil
3Instituto Nacional do Câncer, Praça da Cruz Vermelha, 23, 20230-130, Rio de Janeiro, RJ, Brasil

Abstract: The interest of scientific community in the research of biological effects of medicinal plants is increasing. Among the different substances isolated from natural products, stands out flavonoids. Rutin is a flavonoid used in conventional and traditional medicine. In nuclear medicine, radiopharmaceuticals present an expected biodistribution and uptake in determined target organs. However, studies show that biodistribution can be altered by the use of natural or synthetic substances. In this study, we evaluated the biodistribution of the radiopharmaceutical sodium pertechnetate (99mTcO4Na) in Wistar rats treated with rutin. Male Wistar rats were divided in two groups: treated with rutin (n=5) and treated with NaCl 0.9% (n=5). 99mTcO4Na was administered and the radioactivity percentage per gram of each organ was determined (%ATL.g-1). The results show that rutin interfered on the uptake of 99mTcO4Na in liver (P=0.0026), when compared with group 2. The results can be explained by the pharmacological effects of this flavonoid like hepatoprotective actions.

Key words: Rutin, biodistribution, sodium pertechnetate, flavonoid

INTRODUCTION

The use of natural products is growing in the world. Due to this fact, the interest of the scientific community in studying the biological actions of medicinal plants is increasing[3]. Many substances can be isolated from medicinal plants, each one has its own characteristics, like chemical structures and pharmacological effects. Flavonoid is one of these substances isolated from medicinal plants which presents therapeutic importance. They are absorbed by digestive via and present low toxicity. This substance presents many biological effects, like anti-inflammatory and antispasmodic[8]. Rutin is a well-known flavonoid, which has been suggested many pharmacological activities, including myocardial protection[9], vasodilator[8], tricyclicglycerol levels reducer[8], angiotensin[9] and antioxidant agent[6,7].

In nuclear medicine, radioactive tracers, known as radiopharmaceuticals, are employed in blood flow, metabolism, morphology of an organ[8] and to evaluate the drug formulation and drug delivery systems[9]. Radiopharmaceuticals are designed to have specific biodistribution and uptake in determined targets and/or elimination patterns when administered to normal subjects[3]. Technetium-99m (99mTc) has been the most utilized radionuclide in nuclear medicine procedures and it is also used in basic research. The wide use in nuclear medicine is due to its optimal physical characteristics (half-life of 6h, gamma rays energy of 140 keV and minimal dose to the patients), convenient availability from 99Mo/99mTc generator and negligible environmental impact[11]. The radiopharmaceutical sodium pertechnetate (99mTcO4Na) is the form of 99mTc eluted from the 99Mo/99mTc generator and it is used in nuclear medicine to obtain images from thyroid, gastric mucosa, salivary glands, choroids plexus of the brain[11]. An unexpected patterns of radiopharmaceuticals distribution provoke a flurry of inquiries regarding the quality of administered agent. But, the alterations in biodistribution may be related to drug interaction with radiopharmaceuticals[12]. In literature, many authors described that drugs (natural or synthetics) can alter the bioavailability of radiopharmaceuticals, like

Corresponding Author: Luciana C. Bernardo, Universidade do Estado do Rio de Janeiro, Roberto Alcantara Gomes Biology Institute, Biophysic and Biometry Department, Mario Bernardo-Filho, Av. 28 de setembro, 87, Zip code: 20551-030, Phone: 55 21 22543532, Fax: 55 21 25876432 E-mail: bernardo@uerj.br / lucianabernardo@click21.com.br

518
Gomes et al.12 that reported that mitomycin-C alter the biodistribution of 99mTc labeled sodium pyrophosphate (99mTc-PYP)[12]. In this study we evaluated the biodistribution of the radiopharmaceutical 99mTcO\textsubscript{4}Na in \textit{Wistar} rats treated with rutin.

MATERIALS AND METHODS

Ten male \textit{Wistar} rats were used to perform the experiment. The animals were divided in two groups: treated (\textit{n}=5) and control (\textit{n}=5). Rutin (Sigma, USA) solution (20 mg.kg-1) was administered for treated group during 8 days and saline solution (NaCl 0.9\%) for control group in the last day. In this way, was injected by ocular plexus 0.3 mL of 99mTcO\textsubscript{4}Na (3.7 MBq). After 10 min the animals were sacrificed and the organs were removed, weighted and radioactivity of each organ was obtained in a well counter (Clingamamma, gamma counter, LKB, Wallac, Finland). The radioactivity percentage per gram of each organ was determined (\%ATIg-1). The statistical analyses were performed with Student’s \textit{t}-test (\textit{P}<0.05).

RESULTS AND DISCUSSION

The results show that rutin interfered in the uptake of 99mTcO\textsubscript{4}Na in liver (\textit{P}=0.0026). In control group the \%ATIg-1 was 1.08±0.19, while in treated group was 1.90±0.38 (Table 1). In literature is related that many drugs were capable to modify the bioavailability of radiopharmaceuticals12. Gomes et al.12 showed that mitomycin-C due to its toxicity alter the biodistribution of 99mTc-PYP. Mattos et al.10 observed that vincristine modify the bioavailability of 99mTc-dimerocatrosomic acid (99mTc-DMSA) and 99mTc-diethylenetriaminepentaaetocetic acid (99mTc-DTPA) probably due to the toxic and immunosuppressive effects of this drug. Diré et al.13 related that \textit{Sechium edule} was capable to alter the uptake of 99mTcO\textsubscript{4}Na in some organs in \textit{Wistar} rats. This alteration is associated to the generation of active metabolites with liceve properties in specific biological system15.

In conclusion, rutin increased the uptake of 99mTcO\textsubscript{4}Na in liver, that can be explained by the pharmacological effects of this flavonoid, like hepatoprotective actions16.

ACKNOWLEDGMENT

This research was supported by Fundação do Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Universidade do Estado do Rio de Janeiro (UERJ), Conselho Nacional de Pesquisa (CNPq) and Fundação Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES).

REFERENCES