Isolation of Sheep Sarcocystis 35 kD Protein Fragment by Ion Exchange Chromatography

Bahram Kazemi, Hooshang Khazan, Omid Azymzadeh, Ali Ghadjari, Seyed Javad Seyed Tabaei and Farid Tahvildar Biderouni

1Department of Biotechnology, Cellular and Molecular Biology Research Center
2Department of Parasitology, School of Medicine, University of Medical Sciences, Shaheed Beheshti, Tehran, Iran

Abstract: The genus of sarcocystis parasites have two hosts in their life cycle and are zoonotic. They also have special importance in industrial veterinary. The best way for prevention and control in zoonotic disease is vaccination. This research was planned for sheep sarcocystis antigen isolation by chromatography and a 35 kD antigen was separated by ion exchange chromatography using alkaline (pH=8) CM cellulose resin.

Key words: Sarcocystis, ion exchange chromatography, CM cellulose

INTRODUCTION

The protozoa of sarcocystis genus are obligated intera cellular parasites. The life cycle of these parasites consist of merogony, gamogony and sporogony. Most of them are obligated to have two hosts in their life cycle. A sexual reproduction will happen in the intermediate host artery endothelial cells. Host is always a herbivorous or an omnivorous animal. The last generation of endozoite in striated muscles, nerve tissue and porcine fiber of host heart will form sarcocystis cysts. Metrocytis in premature cyst will develop with consecutive asexual endopolygeny. Mature cysts consist of thousands of cystozoites that will not multiply, this is the last phase of asexual reproduction. The cysts will be ingested by a definitive host (carnivorous animals) and sexual stages of cystozoite will be in epithelial cells of small intestine and oocysts are finally produced. Sporulation of oocyst happens in definitive host lamina properia of small intestine. Final step formation of oocyst is in definitive host. Sarcocystis parasites have special importance in industrial veterinary. These parasites have a negative effect on quality and quantity of meat and wool of animal hosts. Diagnosis of macroscopic sarcocysts in animal will bring about the burial of whole carcass or some parts of it by health staff in the slaughter house. It is estimated that more than one million dollar worth of cow meat is buried annually in the United States of America[12]. The best way for prevention of this zoonotic disease is vaccination because control of definitive host is difficult. Domestic animal vaccination is economically very cost effective and the disease can also be controlled in humans. The aim of this project was to separate a single protein of sheep sarcocystis by chromatography to be used in animal sarcocystis detection and vaccination.

MATERIALS AND METHODS

The infected muscles of sheep carcass were collected from slaughter house and transferred to laboratory. The sarcocystis were separated from the infected muscles with scraples and kept in normal saline for preparing crude antigens. The sarcocystis were freezed and thawed (-22 and 37°C) for 12 times and sonicated. The crude antigen was fragmented by serial dilution of ammonium sulfate solution[13] and final separation was done by gel filtration and ion exchange chromatography by alkaline CM cellulose resin (pH=8)[14] and was developed on stained commasski brillant blue 12% SDS-PAGE gel[15].

RESULTS AND DISCUSSION

Some single protein bands were separated by column chromatography and ion exchange chromatography by different pH in positive and negative charges. Finally, a 35 kD protein band was separated by ion exchange chromatography using alkaline CM cellulose resin. Figure 1 shows the protein band on stained commasski brillant blue SDS-PAGE gel.

Sarcocystis is an important infectious agent in cow, pig and sheep (as intermediate hosts) which can be infected by ingestion oocyst in feces of dog, wolf, fox,
ACKNOWLEDGMENT

This research was supported by Shaheed Beheshti University of Medical Sciences.

REFERENCES


