Indian Honey: A Natural Product with Antibacterial Activity Against Antibiotic Resistant Pathogens, an in vitro Study

1Amit Kumar, 2Richa Kaushik, 3Anjana Kashyap and 4Manoj Kumar Kashyap
1Department of Microbiology, Institute of Pathology,
Safdarjung Hospital Campus, New Delhi-110029, India
2Department of Applied Chemistry, M.D.S. University, Ajmer (RJ)
3Department of Botany, C.C.S. University, Meerut, India
4Department of Veterinary Biosciences, College of Veterinary Medicine,
University of Illinois, Urbana-Champaign (IL), USA

Abstract: The present study designed to investigate the antibacterial activity of honey obtained from different state of India. A total of 10 honey samples (five from Uttarakhand state and five from Uttar Pradesh state) were investigated for their antibacterial activity against antibiotic resistant bacterial isolates of S. epidermidis and E. coli using the disc diffusion method. Marked variations were observed in the antibacterial activity of different sample of honey. Three (60%) of the five Uttarakhand samples and two (40%) of the five Uttar Pradesh samples showed excellent antibacterial activity against gram-positive and gram-negative bacteria. Both Uttarakhand state and Uttar Pradesh state honey samples possess in vitro antibacterial activity against antibiotic resistant isolates of S. epidermidis and E. coli bacteria at 400 µl/disc quantity of 60% concentration (v/v).

Key words: Indian honey, antibacterial activity, antibiotic resistant pathogens, gram-positive bacteria, gram-negative bacteria

INTRODUCTION

According to the definition of National Honey Board, honey is the substance made when the nectar and sweet deposits from plants are gathered, modified and stored in the honeycomb by honeybees. The definition of honey stipulates a pure product that does not allow for the addition of any other substance. This includes, but is not limited to water or other sweeteners.

The composition of honey is mainly due to three major components, fructose (38%), glucose (31%) and water (17%)[1]. The remaining 14% contains small amounts of some 22 disaccharides, trisaccharides, oligosaccharides, minerals, vitamins and enzymes. The acidic pH of honey (average 3.9), the high sugar concentration and the long equilibration times all favor, revision and may be responsible for the formation of some rare sugars in honey that are not ordinarily found in nature. The potential nutritional value of many of these sugars is an area of research that has remained largely unexplored. There is also a growing interest in the reproduction of healthy bacteria into the colon following diarrheal diseases or the extended use of antibiotics[13].

Nutrients with known antioxidant properties such as tocopherols, alkaloids, ascorbic acid, flavonoids, phenolics and various enzymes, have been noticed in honey in small amounts. Nectar contains large quantities of flavonoids, plant pigments and flavoring compounds with antioxidant properties[19].

The medical importance of honey is well understood and honey is being used as therapeutic agent in Ayurvedic medicine in India[15]. The therapeutic value of honey has been demonstrated in various countries such as China[6], the Middle East[7], Africa[8], India[9]. In the Middle East and China, honey is considered a traditional remedy to treat the common cold and various respiratory tract infections[10,11].

The antibacterial activity of honey is well documented and its therapeutic value has been useful in the treatment of infected surgical wounds and ulcers[10-12] and burns[10]. Although, anti-fungal activity of honey has been reported, but a very little information available about its anti-mycotic activity[13-15]. Subrahmanyan[16] reported that honey is a good preserving medium for skin grafts. Recent investigation uses it against multi-drug-resistant microbial pathogens[5,14].

Corresponding Author: Manoj Kumar Kashyap, Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign (IL)-61802, USA
Tel: 217 384 3143 Fax: 217 244 1652 E-mail: mkashyap@iuuc.edu
Due to the possible antibacterial activity of Indian honey, the present study was designed to investigate the antibacterial activity of Indian honey against antibiotic resistant bacteria i.e. *S. epidermidis* (gram-positive) and *E. coli* (gram-negative).

MATERIALS AND METHODS

Collection and preparation of honey samples: Total of 10 honey samples (5 from Uttarakhand state (Hardwar) and 5 from Uttar Pradesh state (Meerut, India)) were collected in sterile containers and kept at room temperature (24-26°C) for 30 days before experimentation. Each sample was prepared in various concentrations (20, 40, 60, 80 and 100% (v/v)) with sterile distilled water and was soaked in 5 mm diameter of paper discs (Whatman filter paper-42) for 2 h at room temperature.

Honey samples test for sterility: The sterility of honey was tested by inoculation of honey samples as described by James et al. and modified method version. In brief, a loopful of prepared honey sample was streaked on blood agar and Sabouraud agar medium. Blood agar plates were incubated at 37°C for 24 h and Sabouraud agar plates were incubated at 25°C for 7 days.

Test organisms: Pure isolates of *S. epidermidis* and *E. coli* were isolated from Indian patients and were confirmed for antibiotic resistant in our laboratory. Both test organisms were therefore considered to be multidrug-resistant.

Determination of antibacterial activity: Prepared concentrations of honey samples were tested against antibiotic resistant bacteria (*S. epidermidis* and *E. coli*) by the disc diffusion method. In the suspension of bacterial colony was mixed thoroughly (10^7 bacterial cell/100 uL) with nutrient agar (15 mL/plate) and poured into a petri dish. After 30 min, soaked paper discs were placed on the medium to check the antibacterial potency of various concentrations of honey and then the Petri plates were incubated at 37°C temperature for 24 h. Each concentration of honey was tested in triplicate and the mean was calculated.

RESULTS AND DISCUSSION

Sterility of honey samples: Prepared concentrations of honey were tested for its sterility and were observed to be sterile for bacterial growth on blood agar medium and for fungal growth on Sabouraud agar medium.

Antibacterial activity of honey samples against antibiotic resistant bacteria: Out of 10 honey samples, only 5 (60%) from Uttarakhand state and 2 (40%) from Uttar Pradesh state, India exhibited antibacterial activity against *S. epidermidis* and *E. coli* bacteria (Table 1). Samples UH-H-1 (from Uttarakhand state) and UP-H-3 (from Uttar Pradesh state) showed the maximum zone of inhibition at 60% concentration against *S. epidermidis* (18 and 16 mm diameter) and *E. coli* (16 and 14 mm diameter), respectively.

Antibiotic resistant isolates of *S. epidermidis* and *E. coli* were found highly sensitive to honey samples, collected from Uttarakhand state as compared to those obtained from Uttar Pradesh state. Additionally, all potential honey samples of both states showed good antibacterial activity against *S. epidermidis* than *E. coli* bacteria.

Selected concentration (60% v/v) of honey samples (UH-H-1 and UP-H-3) were tested at different concentration i.e. 100, 200, 300, 400 and 500 uL/disc for antibacterial efficacy against both antibiotic resistant isolates. Table 2 shows the highest zone of inhibition observed against both isolates was with 400 uL/disc of 60% concentration of UH-H-1 (18.0 mm for *S. epidermidis*).

<table>
<thead>
<tr>
<th>Antibiotic resistant bacteria</th>
<th>Various concentrations of honey samples (v/v%)</th>
<th>Uttarakhand (UH-H)</th>
<th>Uttar Pradesh (UP-H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td><em>S. epidermidis</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>11</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 2: Quantitative activity of 6% (v/v) concentration of selected (high potency) honey samples against antibiotic resistant bacteria

<table>
<thead>
<tr>
<th>Different quantity of honey samples (µL/disc)</th>
<th>UH-H-1</th>
<th>UP-H-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. epidermidis</td>
<td>E. coli</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>200</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>300</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>400</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>500</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

and 17.0 mm for E. coli) and UP-H-3 (15.0 mm for S. epidermidis and 14.5 mm for E. coli).

In India, plants and their products are used as therapeutic agent in Ayurvedic medicine system. Honey is produced from floral sources and its antimicrobial property has been well documented. Since Dold et al. first discovered the antimicrobic activity of honey in 1937 and later many other researchers worked on this issue and discussed this property in detail. Honey has been reported to have anti-S. epidermidis and anti-E. coli activity, but there is no report regarding the antibacterial activity of Indian honey against antibiotic resistant isolates of S. epidermidis and E. coli bacteria. In this study, Indian honey samples showed the antibacterial activity against antibiotic resistant isolates of S. epidermidis and E. coli.

The honey concentration at 40% was reported to possess strong anti-bactericidal activity against various gram-positive and gram-negative bacteria, in particular against Salmonella, Shigella, enteropathogenic E. coli and Vibrio cholerae.

Present study shows that Indian honey samples (UH-H-1 and UP-H-3) had the greatest activity out of all samples tested against antibiotic resistant isolates such as S. epidermidis and E. coli. This antibacterial activity was demonstrated at 60% (v/v) concentration of honey samples for gram-positive and gram-negative bacteria. This study indicates the broad activity at 60% concentration of Indian honey. UH-H-1 and UP-H-3 samples were tested at different quantity of 60% concentration and 400 µL/disc quantity of honey showed the maximum zone of inhibition against S. epidermidis and E. coli.

When we compare the antibacterial activity of Uttarakhand samples with those obtained from Uttar Pradesh samples, it seems that the degree of activity depends on the geographical location of honey samples.

The present study indicates that honey obtained from Uttarakhand state (mountainous area) would show better antibacterial activity (60% honey samples) than honey obtained from Uttar Pradesh state (only 40% honey samples).

Although honey is known to act against different bacteria, including those that are highly resistant to antibiotics. From the present study, it is clear that Indian honey possesses considerable antibacterial potency and can be used to treat infections of antibiotic resistant bacterial isolates of S. epidermidis (gram-positive) and E. coli (gram-negative).

Honey was used, as a remedy for burns, cataracts, ulcers and wound dressings from long time, perhaps due to its soothing during its initial application to open wounds. In near future, it can be used as therapeutics for treating bacterial infection specially related with S. epidermidis and E. coli. The results are encouraging but further there is a need to continue to investigate this issue in detail.

REFERENCES