First Report of Pulmonary Nocardi a transvalensis Infection from Turkey

1Ozlem Mentes, 2Yasemin Zer, 1Iclal Balci and 3Mehmet Ozaslan
1Department of Microbiology and Clinical Microbiology,
2Microbiology Laboratory, Sahinbey Medical Center,
3Department of Biology, University of Gaziantep, 27310 Gaziantep, Turkey

Abstract: Infections caused by Nocardi a species have been reporting frequently in recent years. Nocardiosis usually occurs in patients who have either impaired local pulmonary defenses or systemic immuno-suppression. A 57 years old male patient with hemoptysis admitted to our hospital. Bronchoalveolar lavage and sputum specimen examined for mycobacteria. BAL and sputum samples taken from the patient, the causal agent of this event isolated and determined as Nocardi a transvalensis. An antimicrobial therapy with trimethoprim-sulfamethoxazole (TMP-SXT) 4 g/day started. At the end of the treatment clinic, radiologic and bacteriologic cure observed. This is the first report of pulmonary N. transvalensis infection from Turkey.

Key words: Nocardi a, Bronchoalveolar lavage, bronchiectasis, lobar cavitation

INTRODUCTION

Nocardi a firstly described by Edmund Nocard in 1888 (Lederman et al., 2004). Members of the genus Nocardi a are aerobic actinomycetes that are ubiquitous saprophytes in soil, decaying organic matter and water (Karaaslan, 1999; Matulionyte et al., 2004; Carriere et al., 1999; Dikensoy et al., 2004). When observed microscopically, either gram stains of clinical specimens, cultures or when histopathologically in tissues Nocardi a are branching, beaded, filamentous, gram positive bacteria and are usually weakly acid-fast (Karaaslan, 1999; Saubolle and Sussland, 2003). Nocardi a species are responsible for a wide spectrum of disease in patients with both normal and abnormal immune systems (Lederman et al., 2004). In general, nocardiosis is a disease that affects primarily the cell-or humorally immuno-compromised population: transplant recipients, patients on high dose steroid and patients with cancer, AIDS or other leucocyte deficiencies, diabetes mellitus, SLE, sarcoidosis, cystic fibrosis, emphysema, asthma, bronchiectasis, tuberculosis and alveolar proteinosis (Lederman et al., 2004; Saubolle and Sussland, 2003; Menendez et al., 1997). The authors estimate that less than 10% of patients with nocardiosis have no definable underlying predisposing factors (Saubolle and Sussland, 2003). Most infections in humans are due to N. ast eroides group (Lederman et al., 2004; Beaman and Beaman, 1994). Species like N. brasiliensis, N. nova, N. farcinc a, N. transvalensis, N. africana are also isolating in growing frequencies (Saubolle and Sussland, 2003). N. ast eroides usually causes pulmonary infections. The form in the lung is developing because of inhalation of sports. (Menendez et al., 1997). N. transvalensis, a rare nocardia species previously been recognized as cause of actinomycotic mycetoma (MC Nei l et al., 1992; Lopez et al., 2003). Nocardiosis is the most commonly seen in the age group 20-60 and affects men and women equally (Philip et al., 1996). Nocardial infections are not thought to be transmitted from person to person and are usually acquired nosocomically (Saubolle and Sussland, 2003; Menendez et al., 1997). A sharp increase in nocardiosis infections are reported from throughout the world since 1960 (Menendez et al., 1997). We exactly do not know reasons for this, but the idea, related to the development of new diagnostic methods, prevalence of transplantation applications and immuno-suppressive treatment usage. Earlier reports estimated that 500 to 1000 cases/year occur in USA and probably 150-250 in France (Matulionyte et al., 2004; Menendez et al., 1997).

Case report: A 57 years old male patient admitted to Gaziantep University Hospital Cardio-vascular surgery department because of complaint of hemoptysis for 7 months and 3 times a day for last ten days. Patient used to smoke one pocket of cigarette per day over twenty years. Physical examination of the chest common rates observed. Examination of the other systems was unremarkable. Admission in laboratory values were as follows: WBC 6.98 x 10^3 µL^-1, hemoglobin 15.3 g dL^-1, hematocrit 45.2%, erythrocyte sedimentation rate 33 mm h^-1, EUN 56 mg dL^-1 (normal range 10-50 mg dL^-1).

Corresponding Author: Ozlem Mentes, Gaziantep Universitesi Tıp Fakültesi, Mikrobiyoloji ve Klinik Mikrobiyoloji AD, Kilis Yolu üzerinde 27310, Gaziantep, Turkey Tel: +903423606060/77760

2384
glucose 70 mg dL\(^{-1}\) (normal range 70-110 mg dL\(^{-1}\)), albumin 4.8 g dL\(^{-1}\) (normal range 3.4-5.5 g dL\(^{-1}\)), CRP 6.1 mg dL\(^{-1}\) (normal range 0-5 mg dL\(^{-1}\)). In CT examination of lungs, chronic infiltrations, fibrotic changes and bronchiectasis observed. In the left lung, lower lobar cavitations with 30 mm in diameter and fibrotic sequel in the two upper both of lobar also observed. Diagnostic bronchoscopy applied to patient and brochoalveolar lavage taken and sent to our laboratory for mycobacterial culture.

MATERIALS AND METHODS

After the decontamination and homogenization of the sample (BAL), in EZN stain, acid-fast bacteria observed. Sample inoculated onto BACTEC (Becton Dickinson, USA) middlebrook 7H12 medium test tubes for mycobacterial culture. After no increase in growth index observed for 10 days, the BAL sample inoculated to SDA and 5% sheep blood agar medium from test tubes. After incubation for 72 h in blood agar medium white, R type, harsh, embedded to medium, velvety colonies produced (Fig. 1). Gram stain performed to colonies and gram positive, filamentous, branching bacteria observed. Modified EZN stain (decolorized by 1% sulfuric acid instead of acid-alcohol) applied to colonies and acid-fast bacteria observed. Urea test was positive, so, isolate evaluated as *Nocardia* sp. BAL and sputum samples taken from the same patient after 15 days of first isolation. The same bacterium determined again. Isolated bacteria sent to reference laboratory (Faculte De Pharmacie, Laboratorie De Mycologie, Lyon, France) by Turkish Microbiology Society Nocardiosis Work Group for further tests on identifying species and antibiotic sensitivity.

RESULTS

The isolate identified as *Nocardia transvalensis*. As the antibiotic test results: the isolate susceptible to cefotaxime, ceftriaxone, cefepime, amikacin, minocyclin, amoxicillin clavulanic acid, TMP-SXT, it was intermediate susceptible to amoxicillin, piperacicillin-tazobactam and imipenem and resistant to ampicillin, ticarcillin, piperacicillin, gentamyacin, tobramycin, erythromycin, vankomyein, trimethoprim and rifampicin. Therapy with TMP-SXT (4 g/day) started for six months. After 4 weeks in the first control, there was no complaint about hemoptysis but radiological findings still were visible. The work on the mycobacteia through the bronchoalveolar lavage which taken in the beginning continued till 6 weeks then the results was negative against to mycobacteria. It indicated that the causal organism of the patient is not related with tuberculosis.

DISCUSSION

Nocardiosis is usually an opportunistic infection and most commonly presents as pulmonary disease (Saubolle and Sussland, 2003). The majority of patients with clinically recognized disease have underlying debilitating factors. Depressed immune system especially T cells and macrophages is an important predisposing factor in nocardia infections. T cells and macrophages kill the bacteria and prevent dissemination (Matulonyte et al., 2004; Menendez et al., 1997; Beaman and Beaman, 1994). So observing opportunistic infections in immunosuppressive patients is not a surprise. Hui et al. (2003) have retrospectively reviewed 35 patients with pulmonary nocardiosis. They reported that the majority (63%) of them have had an underlying respiratory disorder ranging from common conditions such as chronic obstructive lung disease (26%), asthma and bronchiectasis (20%), to less common ones such as previous tuberculosis and cystic fibrosis (5.7%). Non-respiratory disorders were comprised of patients with
underlying malignancies (20%), organ transplantation (8.6%), autoimmune disorders (5.7%) and HIV (5.7%). Pulmonary nocardiosis clinically causes cough (with or without hemoptysis), anorexia, fever, weight loss and dyspnea (Philip, 1996). Radiological signs are not specific too. Serologic diagnosis is unreliable and serologic tests are not available commercially. Gram staining is the most sensitive method by which to visualize and recognize nocardia in clinical specimens (Saubolle and Sussland, 2003).

Nocardia normally appears with 2 to 7 days on most routine bacteriologic media such as sheep blood agar, chocolate agar and BACTEC blood culture broth media. *Nocardia* are rarely seen as contaminants in the laboratory and each isolate must be carefully evaluated as to its clinical significance (Saubolle and Sussland, 2003). Clinically, it may mimic a carcinoma, tuberculosis or other granulomatous diseases of the lung (Singh et al., 2000).

In this case, hemoptysis was the only symptom. There was no history of drug usage, which could depress the immune system. Nonetheless, it is a great possibility that bronchiectasis may be the underlying factor for pulmonary nocardiosis (Hui et al., 2003). TMP-SXT was used for 6 months. After treatment sputum sample was taken from patient but no pathogen was grown on culture. Then the control CT taken and it is revealed that no more cavitation present in lung.

As a conclusion of this study work, the tests for identification of bacteria, in particular *Nocardia* spp. must not neglected in the risk group of pulmonary or systemic diseases.

REFERENCES

