Effect of *Leishmania gerbilli* Injection on Mice Immunization Against Cutaneous Leishmaniasis (CL) Caused by *Leishmania major*

1Abedi Said, 3Khamesipour Ali, 2Izadi Shahrokh, 4Hejazi Hosein and 3Mikhak Mahin
1Department of Microbiology, Azad Islamic University of Falavarjan, Isfahan, Iran
2Thehran Medical University, Tehran, Iran
3Department of parasitology, Isfahan Health Research Center, Tehran, Iran
4Faculty of Health, Tehran University, Tehran, Iran
5Isfahan Medical University, Isfahan, Iran
6Isfahan Social Security, Isfahan, Iran

Abstract: In the present study *Leishmania gerbilli* were used to immunize BALB/c mice against pathogenic strains of leishmaniasis to determine whether injection of *L. gerbilli* in mice could protect them against later *L. major* inoculation. Eighty female BALB/c mice were divided by random in eight groups. Promastigotes of *L. major* and *L. gerbilli* were used. Mice were inoculated with three different doses of *L. gerbilli* (3×10⁵, 2×10⁷ and 5×10⁷) via subcutaneous (SC) in the base of their tails or iprotein (IP). Forty days after the first injection, all mice received the same doses as a booster. Two control groups received PBS (SC or IP) only. All BALB/c mice were inoculated subcutaneously with 2×10⁷. Promastigotes of *L. major* in the base of their tails after 75 days of the first injection of *L. gerbilli*. When leishmania lesion developed (35 days after challenge), the size was measured and continued once a week for 12 weeks. Meanwhile, the liver and spleen samples of dead mice moved to culture media and examined for the parasite. Delaed Type Hypersensitivity (DTH) and immunofluorecent tests were used to determine results of immunization. Compared with the control group and the other groups that received different doses of *L. gerbilli* via IP, an evident decrease in lesion size was observed in group that received 2×10⁷ promastigotes (p<0.05). By contrast, in those groups received *L. gerbilli* subcutaneously, no difference was observed through the different doses of inoculated parasite. Comparison of the inoculation styles showed that IP method caused smaller lesions than SC (p<0.05).

Key words: *Leishmania gerbilli*, immunization, BALB/c, *Leishmania major*

INTRODUCTION

Leishmania species are known as parasitic protozoan cause of many kinds of leishmaniasis include Cutaneous (CL), Visceral and mucocutaneous Leishmaniasis. Cutaneous Leishmaniasis (CL) is an endemic disease in many parts of the world that can cause considerable dermal disease and may result in sever disfigurement. *Leishmania major* and *Leishmania tropica* are pathogenic agents of Cutaneous Leishmaniasis (CL) in man and many other animals and transmitted by the bites of infected phlebotomine sand flies in nature.

Various efforts such as Local irradiation, cryotherapy and antileishmanial drugs, are beening made to enhance healing of the ulcer which none of them has proved satisfactory for the treatment of CL. In the search for new ways to control of leishmaniasis there has been a major emphasis on immunization methods, for example killed amastigote vaccine against fatal *L. major* (Liew et al., 1987), Bacilli Calmett Gutrin (BCG) as a vaccine (Stephani et al., 1993), Recombinant BCG (Connel and Medina, 1993) and different colonies of *L. major* and *L. arabica* (Peters et al., 1990).

Since no effective chemotherapy on cutaneous and visceral leishmaniasis is available, many efforts focused on finding effective immunization material. In the present research *Leishmania gerbilli* were used to immunize animals against pathogenic strains of Leishmania to determine whether injection of *L. gerbilli* in mice could protect them against later *L. major* inoculation. *Leishmania gerbilli*, a kind of Leishmania species causes CL in *Rhombomys opimus* (but not in *Meriones libycus*). It first reported from Kanzo and Sinkiang in China with zoonetic cycle and shows that failure to contaminated...
human (Sterelkova et al., 1991). It’s isoenzymatic pattern was studied in previous USSR and compared with other strains (Kellin and Passova, 1985). Because of such a close relationship between L. gerbilli and L. major, we suppose that early injection of L. major promastigotes may conclude further immunization in BALB/c mice.

MATERIALS AND METHODS

Animals: Eighty female Balb/C mice purchased from Pasteur Institute of Tehran and transported to laboratory of Isfahan researching center and Islamic Azad University of Falavarjan. After that, they were divided by random in eight groups following by breeding to 6-8 weeks old mice.

Parasite: Promastigotes of L. major (strain MRHO/IR/75/ER) which was isolated from Rhombomys opimus in Isfahan region (Iran) and L. gerbilli (strain MRHO/CN/60/GERBILLI/LON25) that was obtained from Tarbiat Modares University (Tehran-Iran), were used. Promastigotes cultured in RPMI 1640 medium (mixed by 10% fetal calf serum, 100 µg mL⁻¹ Streptomycin, 50 µg mL⁻¹ Gentamycin, 100 IU mL⁻¹ Penicillin) and obtained in stationary phase of culture as well as washed three times in PBS.

Immunization: Mice were inoculated with three different doses of L. gerbilli (3×10⁶, 2×10⁷ and 5×10⁷) via Sub Cutaneous (SC) in the base of their tails or Inter Pretoen (IP). Forty days after the first injection, all mice received the same doses as a booster and two control groups received PBS (SC or IP) only.

Challenge: In order to study the role of immunization in Cutaneous leishmaniasis, all Balb/C mice were inoculated subcutaneously with 2×10⁶ Promastigotes of L. major in the base of their tails after 75 days of the first injection of L. gerbilli. When leishmania lesion developed (35 days after challenge), the size was measured in two dimension at right angles to each other with a caliper gauge and continued once a week for 12 weeks. Meanwhile, the liver and spleen samples of dead mice moved to culture media and examined for the parasite.

Statistical analysis: The Tukey-HSD test was used with SPSS software (Microsoft excel version 9) to analyze the data.

RESULTS

In this study, animals (L. gerbilli-infected BALB/c mice) were injected by L. major at 75th day and five weeks later the nodule transformed into an ulcer which increased in size.

DISCUSSION

Compared with the control group and the other groups that received different doses of L. gerbilli via IP, an evident decrease in lesion size was observed in group that received 2×10⁷ promastigotes (p<0.05), (Fig. 1). By contrast, in those groups received L. gerbilli subcutaneously, no difference was observed through the different doses of inoculated parasite (Fig. 2). Comparison of the inoculation styles, showed that IP method caused smaller lesions than SC (p<0.05). In other experiment, mice which received 3×10⁶ or 5×10⁷ L. gerbilli promastigotes subcutaneously or by intraperitoneal, no significant difference was seen in lesion size.
a immunized agent to protect BALB/c mice. Promastigotes of different strains of Leishmania was used before. Barrel used L. mexicana amazonensis Promastigotes; he used three different doses of parasite (5×10^6, 2×10^7 and 3×10^7) and showed when doses of antigen increased, it lead to more protection (Barrel et al., 1987). In other study they used five different doses (2×10^4, 2×10^5, 2×10^6, 2×10^7 and 2×10^8) of radiated L. major to protect mice against L. major and reported that although protection in all groups were seen; the better results were seen in 2×10^7 promastigote derived (Liew et al., 1985). This results are similar to that we showed here. Liew at all reported that subcutaneously inoculation of 2×10^4, 2×10^5, 2×10^6 and 2×10^7 radiated amastigotes of L. major in BALB/c mice induced bigger lesions compared with control groups and doses of parasite had not been effect the size of lesions (Liew et al., 1985). In this study no difference were seen in lesion size of mice derived different doses of L. gerbilli subcutaneously. Although the mortality rate in mice was increased as the doses of parasite derived was increased.

REFERENCES

