Bioassay Evaluation of the Entomopathogenic Fungi, *Beauveria bassiana* Vuellem Against Eggs and Nymphs of *Bemisia tabaci* Gennadius (Homoptera: Aleyrodidae)

Mohammad A. Al-Deghairi
Department of Crop Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, P.O. Box 6622, Buraidah 51452, Kingdom of Saudi Arabia

Abstract: This study was carried out to determine the lethal effect of the entomopathogenic fungi, *Beauveria bassiana* Vuell. on eggs, young and old nymphs of the whitefly, *Bemisia tabaci* Germ. Mortality percentage was significantly differed based on stage of *B. tabaci* and conidial concentrations of *B. bassana*. Average of the infection level to insect was very low particularly in eggs with only 4.49%, even with higher conidial concentrations (6 x 10⁵ conidia mL⁻¹). Whereas, it was higher with 1st and 2nd instars (42.045%) and 3rd and 4th instars (35.93%). Three parameters was assessed with *B. tabaci* eggs, namely; egg infection, egg hatchability and crawlers emergence. Egg mortality percentages averaged 1.2, 4.27 and 8.0% with fungal concentration 2 x 10⁴, 4 x 10⁴ and 6 x 10⁴ conidia mL⁻¹, respectively. Daily infection percentages were varied depend upon the conidial concentration where the highest infection rate of eggs was occurred with 6 x 10⁴, followed by 4 x 10⁴ conidia mL⁻¹. Egg hatch was very high, while the mortality among the emerged crawlers was negligible compared with the check. Efficiency of *B. bassana* on whitefly nymphs also was varied based on the insect instar and fungal concentration. Mortality percentages were obviously higher to young nymphs (1st and 2nd instars) than to older ones (3rd and 4th instars). The results indicated that nymphs were highly susceptible to fungal treatment compared with eggs. Additionally, pathogenicity and virulence of *B. bassana* against *B. tabaci* immatures was not indicated by LC₅₀ only, but also, by the time in days (LT₅₀) required to achieve 50% mortality of an insect.

Key words: Whitefly, *Bemisia tabaci*, entomopathogenic fungi, *Beauveria bassana*, biological control

INTRODUCTION

The whitefly, *Bemisia tabaci* Gennadius (Homoptera: Aleyrodidae), is one of the most cosmopolitan, intractable and damaging insect pests in tropical and subtropical areas within an agricultural and horticultural production systems (Brown and Bird, 1992; Brown, 1994; Perring, 2001; Carabali et al., 2005). Since late 1980's, the insect has risen from relative obscurity to become one of the primary insect pests of agriculture worldwide (Castle, 2006; Lin et al., 2007). At least 24 biotypes of this pest have been identified around the world (Peering, 2001; Dong et al., 2007), which suggest that *B. tabaci* is a species complex (Brown et al., 1995). Therefore, it is considered one of the worst world's top 100 invasive species (International Union for the Conservation of Nature and Natural Resources (IUCN) list (http://www.ispg.org/)). It has been found as a pest of tobacco in Greece 100 years ago (Gennadius, 1889). Regardless of habitat change, *B. tabaci* has a long history as a serious pest of field and greenhouse crops (Byrne and Bellows, 1991).

Beauveria tabaci species complex are multivoltine and highly polyphagous pests. A major reason for its expansion in importance and geographical range appears to be the replacement of native races or biotypes by ones of greater economic significance that are capable of: i) invading new cropping systems (Peering, 2001), ii) developing on a broad range of cultivated and non-crop species (over 900 different plant species, belonging to 74 families (Summers et al., 1995; Secker et al., 1998), iii) inducing physiological disorders through feeding (Schuster et al., 1995), iv) vectoring of over 100 plant viruses (Jones, 2003) and v) rapidly evolving resistance to chemical control agents (Ma et al., 2007; Erdogan et al., 2008). *B. tabaci* estimated annual economic losses ranged from several hundred millions to billions of dollars worldwide (Oliveira et al., 2001).

Chemical control provides only short-term solutions. Moreover, the overuse of pesticides, in controlling whiteflies, has provoked the development of resistance to insecticides (Denholm, 1988; Dittrich et al., 1990; Damásio et al., 2007). Environmental residues and human health safety are also a concern, supported by consumers...
demanded of pesticide-free food. Thus, many countries are trying to reduce their use of pesticides (van Lenteren, 2000; Carvalho, 2006) by developing an alternative safety control methods. Since myco-insecticides considered of the most effective alternative control method (Lange and Papierok, 1988; Hajek and St-Leger, 1994), therefore, the success of pest control program depends on conidia survival in the field environment (De La Rosa et al., 2000). Conidia survival may be affected either by environmental factors, host nutritional status and/or control products used to protect crop plants (Monzon et al., 2008).

Beauveria bassiana Vuill. (Moniliales: Deuteromycotes) is considered to be the most promising candidate entomopathogenic fungi against whiteflies (Olson and Oetting, 1999; Faria and Wraight, 2007). Also, the fungus has potentiality to infect a wide host range of insects within different orders including, Homoptera, Hymenoptera, Lepidoptera, Coleoptera and etc., most of which are agricultural pests (Padmaj and Kaur, 2001).

Laboratory and field bioassay have revealed that B. bassiana to be an effective pathogen against whiteflies when applied directly as a concentrated conidial suspension (Wright et al., 2000). Nevertheless, acceptance of the myco-insecticides has been limited among farmers compared with conventional chemical control products. This may be due to low performance and rapid loss of effectiveness (St. Legar and Screen, 2001; Quesada-Moraga et al., 2006). In contrary, the advantages of the use of myco-insecticides include, no-resistant could be earned among insect pests and it is also more safer to non-target insects (Castrillo et al., 2008; Monzon et al., 2008).

Beauveria bassiana, which disease insect pests, is characterized by rapid sporulation and germination, with high virulence and active discharge of conidia, all attractive traits in a fungal pathogen (Hall and Papierok, 1982; Hall, 1985; Fransen, 1990). Moreover, B. bassiana is cheap to mass produce, easy to store and effective over a wide range of temperatures and humidity levels. It also provides a rapid kill at economical doses and, recently, the fungus has commercially been widely developed as a microbial insecticide agent for pest management, particularly against whiteflies and aphids (Wright, 1992; Faria and Wraight, 2007).

Consequently, this study aimed to evaluate, in vitro, the effect of B. bassiana on eggs and nymphs of Bemisia tabaci species complex.

MATERIALS AND METHODS

Insects: In order to obtain B. tabaci immature stages that are free of entomopathogenic fungi infection, whitefly adults were collected, in spring of 2007, by aspirator from squash plants grown in greenhouse at the Research station of Qassim University. Insects were then mass-reared in large screen cages (40x40x30 cm) fed on white kidney beans (Phaseolus vulgaris L.) planted in small pots. The insects and plants were maintained at 26±2°C, 65% RH with a 14:10 (L:D) photoperiod. To produce plants with heavy infestation of whitefly eggs and nymphs, newly white kidney pots were infested with whitefly adults and allowed to lay eggs for three days, resulting in at least 50-100 eggs leaf⁻¹.

Whitefly adults were removed and plants infested by eggs were transferred to another cages and been divided to two groups. The first group were directly used for B. bassiana bioassay against whitefly eggs while the second one was kept until nymphs emergence to evaluate the efficacy of the fungus against nymphal stages of B. tabaci.

Fungal culture: Beauveria bassiana strain, used in this study obtained from the fungal culture, isolated from naturally infected whiteflies according to Abdel-Baky et al. (1998) and kept in slant Agar media at 5°C. The fungal spores were harvested from two weeks old cultures on autoclaved PDA media at 28±1°C by rinsing with sterilized distilled water.

To maintain its virulence, the fungus was pass on to Bemisia spp. and re-isolated before each experiment. For laboratory tests, the fungus was subsequently cultured for 10-15 days on PDA media at 28±1°C and a photophase of 12 h.

Fungal preparations: To produce fungal inocula, slant culture of B. bassiana was subcultured by mixed conidial transfer to PDA media in petri-dishes that were always placed for 15 days at 25°C in darkness. Petri-dishes were sealed with Parafilm and freshly collected conidia from 15-day-old cultures were used for each experiment with replicated run to each. Conidial suspensions were prepared by scraping conidia from petri-dishes into distilled water. The conidial suspension was filtered through several layers of cheesecloth to remove mycelial mats. Viability of conidia was assessed before preparation of suspensions by germinating tests in liquid Czapek-Dox broth plus 1% (w/v) yeast extract medium (Quesada-Moraga et al., 2006). In all experiments, germination rates were higher than 95% after 24 h at 28°C. The concentration of conidia in the final suspension was determined using a Neubauer hemocytometer. The conidial suspension used for the bioassays was adjusted by diluting conidia with distilled water. Virulence bioassay used three concentrations of conidia of 2x10⁶, 4x10⁶ and 6x10⁶ conidia mL⁻¹. In all cases, replicate dilution series for inoculation of replicate leaf disks were prepared.
Infection of *B. tabaci* eggs and nymphs in the laboratory:

Three stages of *B. tabaci* were involved *in vitro* bioassay studies, namely, eggs, young nymphs (1st and 2nd instars) and old nymphs (3rd and 4th instars). Three conidial concentrations (2×10⁶, 4×10⁶ and 6×10⁶ conidia mL⁻¹) were used with each *B. tabaci* life stage mentioned before. For each fungal bioassay test, a kidney bean leaf contained 50 uninfected eggs was selected, labeled and treated by the fungus. A total of 750 individuals of eggs were immersed in 1 mL of conidial suspension for 10 min in the laboratory experiments, the assays were repeated 15 times. The same procedure was repeated with young whitefly nymphs and also with old nymphs. The same number of insects treated with distilled water was used as a check. All experiments were held in a climate chamber at 28±1°C, 60±5% humidity and 14:10 (L:D) photoperiod. Egg infection, hatchability, eclosion, mortality and infection of nymphs were assessed and recorded daily for 15 days.

Data analysis: Two-way analysis of variance was conducted to demonstrate variability among conidial concentrations and check treatment. Treatments mean was compared at 0.05% probability level using Least Significant Difference (LSD). All statistical analysis were performed by using CoStat Software Program (1990). Further, obtained data were corrected using Abbott's formula on the basis of check treatment and subjected to probit analysis (Finney, 1971) generating a concentration-mortality relationship for estimates of LC₅₀ in Confidence Intervals (CI) 95% for each conidial concentration. Moreover, the relationship between time and mortality (lethal time-LT₅₀) was also calculated.

RESULTS

Susceptibility of *Bemisia tabaci* eggs and nymphs to *Beauveria bassiana*: Mortality percentage, as a result of *B. bassina* treatment, was significantly different (*p = 0.05*) among *B. tabaci* eggs and nymphs. Infection levels were generally higher with the 1st and 2nd instars, followed by the 3rd and 4th instars. Meanwhile, infection level of *B. tabaci* eggs was very low and was more tolerant to *B. bassaina* infection. The mean mortality percentages of eggs averaged only 4.49%. Whereas, this value was 42.045 and 35.93% for young and old nymphs, respectively. This means that *Bemisia* nymphs were highly susceptible to fungal treatment compared with eggs infection.

Efficiency of *Beauveria bassiana* against *Bemisia tabaci*

Bemisia tabaci eggs: *Beauveria bassiana* had a low lethal impact on *B. tabaci* eggs. The egg mortality percentages significantly differed among all conidial concentrations and check treatment, except between the moderate (4×10⁶) and higher conidial (6×10⁶) concentrations. Egg mortality percentages averaged 1.2, 4.27 and 8.0% with fungal concentration 2×10⁶, 4×10⁶ and 6×10⁶ conidia mL⁻¹, respectively (Table 1). No mortality was observed with the check treatment. A high conidial concentration (6×10⁶ conidia mL⁻¹) caused significantly higher mortalities than low concentration (2×10⁶ conidia mL⁻¹). Thus, different fungal concentrations varied in ability to infect *B. tabaci* eggs where *B. bassaina* impacts on the egg mortalities largely based upon on its conidial concentrations applied. In general, *B. tabaci* eggs showed little susceptibility to all fungal concentrations used.

Egg infection process by the fungal spores were slow compared with the nymphs. Within the four days of treatment, the eggs that became subsequently infected by the fungal had little changes in color but appeared slightly shrunk when observed under microscope. One week after treatment, most of the unhatched eggs became conspicuously shrunk and had less fungal outgrowths on the surface. In all fungal concentrations, infection symptoms on the eggs were observed on the 3rd day of inoculation and onwards, which slowly increased till the 6th day (Fig. 1). After that, egg infection sharply increased till the end of treatment. A significant variation was observed in infection process (in days) among the three tested fungal concentrations. The daily infection percentages were obviously varied depend upon the conidial concentration. A higher daily percentage of egg infection was observed with 6×10⁶, followed by 4×10⁶ conidia mL⁻¹.

Table 1: Efficiency of *Beauveria bassiana* on *Bemisia tabaci* eggs and crawlers, at 28±1°C, 60±5% RH and 14:10 (L:D)

<table>
<thead>
<tr>
<th>Fungal concentrations</th>
<th>Egg mortality</th>
<th>Egg hatchability</th>
<th>Crawlers emergence</th>
<th>Crawlers mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>conidia mL⁻¹</td>
<td>%</td>
<td>Mean±SE</td>
<td>%</td>
<td>Mean±SE</td>
</tr>
<tr>
<td>Control (Untreated)</td>
<td>0.00</td>
<td>0.00±0.00c</td>
<td>96.13</td>
<td>48.06±0.71a</td>
</tr>
<tr>
<td>2×10⁶</td>
<td>1.20</td>
<td>0.60±0.05b</td>
<td>94.99</td>
<td>47.47±0.79a</td>
</tr>
<tr>
<td>4×10⁶</td>
<td>4.27</td>
<td>2.13±0.32a</td>
<td>91.29</td>
<td>45.60±0.88b</td>
</tr>
<tr>
<td>6×10⁶</td>
<td>8.00</td>
<td>4.00±0.74d</td>
<td>85.20</td>
<td>42.0±0.69c</td>
</tr>
<tr>
<td>LSD</td>
<td>0.61</td>
<td>1.488</td>
<td>71.47</td>
<td>38.4±2.12d</td>
</tr>
</tbody>
</table>

The numbers followed by the same letter(s) within a column are not significantly different at 5% level (Duncan Multiple Rang Test, Duncan, 1951)
Table 2: LC$_{50}$ values of *Bemisia tabaci* immature after treatment with *Beauveria bassiana*, at 28±1°C, 60±5% RH and 14:10 (L:D)

<table>
<thead>
<tr>
<th>B. tabaci immature</th>
<th>LC$_{50}$ (conidia mL$^{-1}$)</th>
<th>Y =</th>
<th>Upper</th>
<th>Lower</th>
<th>Slope</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>3.61×106</td>
<td>-13.51±1.79x</td>
<td>5.54×106</td>
<td>2.44×106</td>
<td>1.79</td>
<td>0.65</td>
<td>0.99</td>
</tr>
<tr>
<td>1st and 2nd instars</td>
<td>4.60×106</td>
<td>-14.83±2.33x</td>
<td>5.41×106</td>
<td>3.87×106</td>
<td>3.23</td>
<td>0.70</td>
<td>0.08</td>
</tr>
<tr>
<td>3rd and 4th instars</td>
<td>5.45×107</td>
<td>-15.37±2.38x</td>
<td>6.61×107</td>
<td>4.49×107</td>
<td>3.23</td>
<td>0.27</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Fig. 1: Daily mortality percentage of *Bemisia tabaci* eggs treated by three conidial concentrations of *Beauveria bassiana* at Lab. conditions

Probit analysis test showed that the medium lethal conidial concentration (LC$_{50}$) for *B. tabaci* eggs was 3.61×106 conidia mL$^{-1}$ (r = 1.79; p = 0.99). Low fungal concentration (2×106 conidia mL$^{-1}$) showed relatively low mortality which the mortality percentage never pass 1.2% 11 days post treatment, while the higher concentration (6×106 conidia mL$^{-1}$) gave its highest mortality percentage (8.0%) after 9 days (Fig. 1).

The lethal time (LT$_{50}$) of treated eggs was calculated for three conidial concentrations varied according to the conidial concentration used (Table 3). LT$_{50}$ of 2×106 conidia mL$^{-1}$ gave a value of 7.35 (7.37-7.74 day) (Slope = 11.45; χ^2 = 9.67; p = 0.169). The LT$_{50}$ for 4×106 conidia mL$^{-1}$ was 6.74 (5.67-8.02 day) (Slope = 0.237; χ^2 = 9.67; p = 0.152) and 6.10 (5.92-6.28 day) (Slope = 0.237; χ^2 = 17.92; p = 0.141) with the higher conidial concentration used (4×106 conidia mL$^{-1}$) (Table 3).

In contrast, *B. tabaci* eggs hatch significantly varied among the treatments, except between check treatment and low fungal concentration. The Hatchability percentages listed 91.3, 94.93, 91.2 and 85.2% for check, 2×106, 4×106 and 6×106, respectively (Fig. 2). This means that, with low, moderate and high fungal concentrations, at least 47.80, 45.60 and 42.60 eggs of 50 subjected to *B. bassiana* were able to produce a new whitefly nymphs (Table 2).

In addition, emergence of *B. tabaci* crawlers obtained from the treated eggs lasted 46.8 (93.6%), 44.6 (89.2%), 41.2 (77.07%) and 38.4 (71.74%) for the check, 2×106, 4×106 and 6×106, respectively (Table 1, Fig. 3). A highly significant variation among the treatment, in respect of the crawlers emergence, was observed.

In most cases, the crawlers failed to escape from the fungal impact, followed the indirect effects on eggs and/or a direct contact with the fungal mycelium when emerged from eggs. Differed mortalities by the fungus among the crawlers were also observed (Table 1). Crawlers mortality was regrettable with the check treatment, while it lasted 6.44, 10.69 and 10.93% for 2×106, 4×106 and 6×106, respectively (Table 1).

Bemisia tabaci nymphs: All tested conidial concentrations were pathogenic and highly virulent against *B. tabaci* nymphs (Fig. 3). Moreover, young nymphs (1st and 2nd instars) were more susceptible to pathogen infection than older ones. The average mortality percentages of the young nymphs were 22.27, 41.47 and 62.40% with 2×106, 4×106 and 6×106, respectively (Fig. 3). Whereas, with older nymphs, mortality averaged 16.76 (2×106), 36.0 (4×106) and 55.13 (6×106). This means that mortality among *B. tabaci* nymphs gradually increased depending on the fungal concentrations and satisfied control could be achieved and maximized with higher conidial concentrations. The statistical analysis revealed that nymphs mortality significantly varied among fungal concentrations and insect instars.
Table 3: LT50 values 95% fiducial limits of *Bemisia tabaci* eggs and nymphs treated by different conidial concentrations of *Beauveria bassiana*, at 28±1°C, 60±5% RH and 14:10 (L:D)

<table>
<thead>
<tr>
<th>Bemisia tabaci life stage</th>
<th>Fungal doses (Spores mL⁻¹)</th>
<th>LT50</th>
<th>LT90</th>
<th>Y =</th>
<th>Upper</th>
<th>Lower</th>
<th>Slope</th>
<th>y²</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>2×10⁶</td>
<td>7.55</td>
<td>10.51</td>
<td>-10.10±11.45X</td>
<td>7.74</td>
<td>7.37</td>
<td>11.45</td>
<td>9.67</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td>4×10⁶</td>
<td>6.74</td>
<td>10.29</td>
<td>-7.44±0.237X</td>
<td>8.02</td>
<td>5.67</td>
<td>0.273</td>
<td>6.70</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>6×10⁶</td>
<td>6.10</td>
<td>9.02</td>
<td>-7.59±9.67X</td>
<td>6.28</td>
<td>5.92</td>
<td>9.67</td>
<td>17.92</td>
<td>0.141</td>
</tr>
<tr>
<td>1st and 2nd instars</td>
<td>2×10⁶</td>
<td>4.77</td>
<td>7.92</td>
<td>-5.06±0.262X</td>
<td>6.29</td>
<td>3.61</td>
<td>0.262</td>
<td>6.43</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>4×10⁶</td>
<td>3.84</td>
<td>6.44</td>
<td>-4.29±0.356X</td>
<td>4.03</td>
<td>3.67</td>
<td>0.365</td>
<td>5.43</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>6×10⁶</td>
<td>3.52</td>
<td>6.44</td>
<td>-3.42±5.26X</td>
<td>3.77</td>
<td>3.28</td>
<td>6.26</td>
<td>34.58</td>
<td>0.101</td>
</tr>
<tr>
<td>3rd and 4th instars</td>
<td>2×10⁶</td>
<td>2.41</td>
<td>9.36</td>
<td>-5.08±6.92X</td>
<td>5.63</td>
<td>5.22</td>
<td>6.92</td>
<td>24.65</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>4×10⁶</td>
<td>4.58</td>
<td>8.00</td>
<td>-4.49±6.80X</td>
<td>8.41</td>
<td>2.48</td>
<td>6.80</td>
<td>17.13</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>6×10⁶</td>
<td>4.01</td>
<td>7.31</td>
<td>-3.80±6.30X</td>
<td>9.80</td>
<td>1.62</td>
<td>6.30</td>
<td>8.45</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 4: Efficiency of *Beauveria bassiana* on the 1st and 2nd instars of *B. tabaci*, at 28±1°C, 60±5% RH and 14:10 (L:D)

<table>
<thead>
<tr>
<th>Fungal concentrations conidia mL⁻¹</th>
<th>Infected Nymphs</th>
<th>Non-infected Nymphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Untreated)</td>
<td>0.00 ±0.0d</td>
<td>100.00 ±5.2d</td>
</tr>
<tr>
<td>2×2×10⁶</td>
<td>22.267 ±11.344</td>
<td>72.67 ±38.873</td>
</tr>
<tr>
<td>4×2×10⁶</td>
<td>41.467 ±20.734</td>
<td>54.53 ±29.27</td>
</tr>
<tr>
<td>6×2×10⁶</td>
<td>62.400 ±31.804</td>
<td>36.40 ±18.20</td>
</tr>
<tr>
<td>LSD</td>
<td></td>
<td>1.375</td>
</tr>
</tbody>
</table>

The numbers followed by the same letter(s) within a column are not significantly different at 5% level (Duncan Multiple Range Test, Duncan, 1951)

Fig. 3: Mortality percentage among *Bemisia tabaci* nymphs treated by three conidial concentration of *Beauveria bassiana* at Lab. conditions

Young nymphs (1st and 2nd instar): A lethal effect on young nymphs (1st and 2nd instars) of *B. tabaci* was observed when they were treated by *B. bassiana*. Mortality percentages among young nymphs significantly varied within all conidial concentrations and check treatment. Mortality percentages averaged 22.27, 41.67 and 62.40% with fungal concentration 2×10⁶, 4×10⁶ and 6×10⁶ conidia mL⁻¹, respectively (Table 4). No mortality was observed with the check treatment in which nymphs were treated with water only. A high conidial concentration (6×10⁶) caused significant higher mortalities than lower concentrations and check treatment as well. It could be concluded that *B. bassiana* varied in ability to infect young nymphs of *B. tabaci* based on conidial concentrations used.

Fig. 4: Daily mortality percentage of *Bemisia tabaci* young nymphs treated by three conidial concentrations of *Beauveria bassiana* Lab. conditions

Infection and development of fungus on the young nymphs was faster than other *B. tabaci* stages. Mortality within nymphs was observed by the 2nd day post-treatment and gradually increased onwards, but the infection symptoms were observed by the 3rd day. Five days latter, all dead nymphs were covered with the fungal mycelium. The fungus obviously killed and destroyed the nymphs completely within 6 days after treatment (Fig. 4). Significant variations in daily mortality percentages were observed among the conidial concentrations.

The results also showed that, LC₅₀ required to kill 50% of young nymphs, was 4.6×10⁶ conidia mL⁻¹ (r = 3.23, p = 0.06), which its regression equation was y = -14.83+2.23x (Table 2). Moreover, the LT₅₀ of young
nymphs was calculated for three conidial concentrations and varied according to the conidial concentration used (Table 3). LT$_{50}$ of 2×106 conidia mL$^{-1}$ gave a value of 4.77 (3.61-6.29 day) (Slope = 0.262; $r^2 = 0.43$; p = 0.144). While LT$_{50}$ of 4×106 conidia mL$^{-1}$ was 3.84 (3.67-4.09 day) (Slope = 0.355; $r^2 = 0.54$; p = 0.183) and 3.52 (3.28-3.77 day) (Slope = 0.26; $r^2 = 0.45$; p = 0.101) with the higher conidial concentration used (4×106 conidia mL$^{-1}$) (Table 3).

Old nymphs (3rd and 4th instar): Impact of *B. bassiana* on old nymphs (3rd and 4th instars) of *B. tabaci* was lower compared with young ones, but had a higher effect when compared with eggs. Significant variation within large nymphs mortalities percentage was recorded based on the conidial concentrations and check treatment (Table 5). Mortality percentages were 16.67% with 2×106 conidia mL$^{-1}$, 35.07% with 4×106 conidia mL$^{-1}$ and 55.20% with 6×106 conidia mL$^{-1}$ (Table 5). No mortality observed with the check treatment (water only). A higher mortality percentages were obtained with the high conidial concentration (6×106) and caused significant mortality than low concentration and check treatment.

Infection and development of fungus on old nymphs was faster but not as with young nymphs. Mortality among large nymphs was observed on the 2nd day post-treatment and increased onwards. The infection symptoms was observed on the 3rd day. In the 5th day of treatment, dead nymphs was covered with the fungal mycelium. The fungus killed and destroyed the nymphs completely within 7-8 days of treatment (Fig. 5). Significant variations in daily mortality percentages were observed among the conidial concentrations.

Based on the Probit analysis, LC$_{50}$ of large nymphs averaged 5.45×103 conidia mL$^{-1}$ ($r = 2.28$; p = 0.328), which its regression equation y = -4.53$+2.28x$ (Table 2). In addition, the LT$_{50}$ varied according to the conidial concentration of *B. bassiana*. LT$_{50}$ of 2×106 conidia mL$^{-1}$ was 5.41 (5.22-5.63 day) (Slope = 5.92; $r^2 = 2.65$; p = 0.01), while LT$_{50}$ of 4×106 conidia mL$^{-1}$ was 4.58 (2.48-8.41 day) (Slope = 6.80; $r^2 = 17.13$; p = 0.002) and 4.01 (1.62-9.80 day) (Slope = 6.50; $r^2 = 8.45$; p = 0.02) with the higher conidial concentration (4×106 conidia mL$^{-1}$) as shown in Table 3.

DISCUSSION

From the previous results, eggs of *B. tabaci* was more tolerant to *B. bassiana* infection and were not easily killed even by the highest conidial concentration of *B. bassiana*. In spite of that, there is a limited information on the lethal effect of entomopathogenic fungi with insect eggs when compared with other insect life stages. Generally, previous studies suggested that the egg stage of an insect is believed to be more resistant to infection than other stages. These results were in agreement with those conducted in Egypt on whitefly eggs, where higher conidial concentrations (10×106 conidia mL$^{-1}$) of *Cladosporium arachidicola* caused only 28% mortality among *B. arachidicola* eggs (Abdel-Baky et al., 1998; Abdel-Baky, 2002). Also, egg of the greenhouse whitefly, *Trialeurodes vaporariorum* Westwood couldn't be infected by *Ascheronia* species (Fransen et al., 1987). The authors attributed this phenomena to the egg chorion structure, which make a hard barrier against fungal spore invasion. This may be drawbacks the germ tube of the fungal spores which need long time to germinate and penetrate the egg shell compared with the faster embryonic development. Additionally, fungal failure in egg infections may be attributed to antifungal compounds on the egg shell that hampered conidial germination.
(Meeks et al., 2002). Consequentially, the neonate can escape from infection inside eggs, but may be contaminated with fungal spores during emergence. Deferred nymphal mortality was detected in 1st instar nymphs upon hatching from eggs contaminated by the fungus. Poprawski et al. (1985) reported that eggs of Otiorhynchus sulcatus F. and Sitona lineatus L. treated with different isolates of entomopathogenic hyphomycetes caused mortality of 0-68 and 26-88% in emerging larvae, respectively. Additionally, Gopalakrishnan and Narayan (1989) reported that eggs of Heliothis armigera Hbn were not susceptible to Metarhizium anisopliae infection. The same trend was obtained with eggs of the Colorado potato beetle, Leptinotarsa decemlineata Say which were also not susceptible to infection by B. bassiana (Long et al., 1998). In contrary, when grasshoppers were exposed to B. bassiana during oviposition, the eggs and egg chorion were actively colonized by the fungus, but egg hatch was unaffected (Inglis et al., 1995).

On the other hand, Maniania (1991) demonstrated that both of B. bassiana and M. anisopliae caused mortalities of up to 97 and 100% in Chilo partellus (Swinhoe) eggs, respectively. He explained that the precise mechanism surrounding the mode of egg infection is still unknown but they observed the fungal propagules inside eggs at 3 days post-inoculation when viewed under the microscope, suggesting the direct penetration of egg chorion by the fungal mycelium.

In case of B. tabaci nymphs, B. bassiana caused higher mortality percentages than in eggs. The results showed that the fungus was able to attach to nymph cuticle, germinate, penetrate the cuticle and cause a significant mortality among nymphs. Meanwhile, fungus ability was also varied among nymphs based on its age and cuticle hardening. The results obtained were in agreement with those of Ekborn (1979), Hall (1985), Masuda and Maeda (1989), Abdel-Baky et al. (1998) and Abdel-Baky (2002), who used different species of entomopathogenic fungi in controlling whiteflies. Germination and penetration of fungal spores on insect cuticle constitute an important step in the fungal infection process (Abdel-Baky et al., 2005). Mortality differences may be due to the difference in producing profuse amounts of cuticle lipids, especially long-chain wax esters (James, 2001). These lipids are produced in such a thick layer of insect cuticle that could inhibit fungal spores to penetrate the cuticle layers (Leecuna et al., 1997).

Lower mortality among B. tabaci immature by B. bassiana compared with Aschersonia spp. (Meeks et al., 2002) and Verticillium lecanii (Gindin et al., 2000) may be due to passing the fungal spores through whitefly before bioassay treatment. Brownbridge et al. (2001) reported that when B. bassiana invaded Bemisia argentifolii Bellows and Ferrin its virulence was enhanced and when repeated sub-culturing on artificial media virulence was decreased.

Statistically, the low regression coefficient obtained in Table 2 and 3 may be due to a certain degree of heterogeneity among B. tabaci immatures regarding their susceptibility to fungal infection, that lead to cause slower rise in mortality with a given increase in conidial concentration. Many authors, worked on whiteflies, found that the regression coefficient was not very high. Wraith et al. (1998) obtained regression coefficient, ranged from 0.5-2.0 for Pseudococcus spp. and B. bassiana when treated on the 3rd instars of B. argentifolii. Whereas, Vidal et al. (1997) obtained slopes varying from 0.62-1.13 for 2nd instar of B. argentifolii inoculated by P. fumosoroseus. The differences among regression slopes could be attributed to partially susceptibility among the stages of whitefly. This resulted was confirmed by Gindin et al. (2000) who reported that V. lecanii caused higher virulence in the early stages of whitefly (emerged nymphs) and reduced with older instars. As a result, the low slopes with whitefly eggs and large nymphs as being more resistant to fungal infections, usage of eggs and 4th instar nymphs for selection of fungal species and concentrations seems to guarantee the efficiency of the entomopathogenic fungi against whiteflies. Finally, most of literature revealed that pathogenicity and virulence of any given fungi is not indicated by LC₅₀ only, but also, by the time in days (LT₅₀) required to achieve 50% mortality of an insect pest.

In conclusion, the results suggest that B. bassiana alone may not achieved satisfactory control for B. tabaci. However, the fungus may be used within an integrated pest management program, or combined with other control tactics, that may enhance B. bassiana performance.

REFERENCES

